
Death of the Design:
Have we forgotten what UI usability even is?

A survey of modern and old computer usability as composed by HackerSmacker

Control-X Control-F. myfile.txt. Control-E. Arrow around. This is a test. Meta-X. Control-X. Control-S. 

A sight uncommon to the casual PC user, but, a site all too common to users
of the Emacs text editor. Emacs is notorious for its immense power, amazing
functionality, and horrendous user-interface design that was never subjected to
usability tests; Emacs was designed at the hands of some hackers (old-days definition,
before the 1995 movie of the same name came out to ruin the definition), not
businesspeople that needed to use a computer on the regular. Is this a good user
interface? Is this usable in the long run? What else can we glean from Emacs-style
software when we pit it against software subjected to usability testing? What even is
a good design? Is it easier to find good design than bad design?

The purpose of this essay is to explore several not-often-considered ideals in
computer interface design. Tools are rarely designed with the intent of ergonomics
being their top priority, but, there are a select few that are demonstrative of excellent
"user longevity" -- a term I will explore in this essay that I am using to describe the
inverse of user fatigue. I will also address these questions in a slightly different order
than what I presented. Let us first address the final question: is it easier to identify a
badly-designed computer user interface than a good one? My short answer is that it
is, but my long answer is that we should not be so quick to make such hasty
judgements. Emacs, mentioned before, was (in its antiquity) a common text editor on
a myriad of computing platforms; born on the legendary PDP-10, Emacs provided a
(comparatively) easy user interface around a very complicated text editor known as
TECO. The Text Editor and COrrector, as it was known, is, bar none, a brilliant
candidate for "worst designed program ever made." Somehow, it was made with the
expectation that it would be used by all users of the computer (in this era, computing
was "timesharing" -- more than one user used a computer at a time). This expectation
falls flat on its face in the modern era; the commands for TECO look like someone
randomly mashing keyboard keys. Without a reference manual, a new user would be
completely and utterly lost. Emacs provided an (again, comparatively) easy to use
interface wrapped around the monster that was TECO; its command-key driven and
repetitive user-interface was seen as a miracle of computer usability compared to the



harsh world of TECO.

Fortunately, today, we no longer have to confuse ourselves with the difficult
computing design of yesteryear... or so we think. Consider another hard-to-use
program: vi. While a skilled user of the vi text editor on a UNIX (or its descendants
and clones) system can edit files extremely quickly and find themselves very
productive, much in the same way I do, the ergonomics of the program are extremely
poor. vi runs in two modes: insert mode and command mode. In command mode, you
can move about the document using the h, j, k, and l keys. Funnily enough, some
users consider this to be very ergonomic, simply because you can use your four
fingers without moving them (we will look at the implications of this later). You
delete with x, start typing with a or i, delete a line with dd, so on and so forth. Simply
put, the key choices of vi are intended to be mnemonic in nature; they are not
intended to be ergonomic in the traditional sense, no, they are reminders of the
function of the key. You can also press : to enter a variety of commands, or enter / to
start searching. Now, contrast this with the UW PICO family of editors -- the nano
editor is a common sight for new Linux users, and is a descendant of pico. The key
combinations on nano are reminiscent of those of Emacs; control-key and meta-key
("meta" is the UNIX-world name for the "alt" key on a PC keyboard) key combos
dominate the user input. What made vi special is that the save command,
:wq<enter>, could be -- and often is -- entered using two different hands. This
provides interesting speed implications, but fails to realize the true issue at play. With
the Emacs and nano model, one is often restricted to entering most keybinds with
their left hand only. Now, I concede that most PC keyboards (minus laptop
keyboards) feature two control keys, left and right, but, this was not the case on the
keyboards used in the era in which Emacs was designed. Keyboards then featured
usually one control key, usually found to the left of where caps lock is found today
on a PC keyboard. The result of this is that the user may hover their hand over the
bottom left of the keyboard, ready to strike the control key and one or more keys at
a moment's notice. As for vi, I found myself the victim of bizarre ergonomics: when
I use vi, my hands do not rest on the home row. My left hand has my index finger on
x, middle finger on w, and my ring finger on q. My right hand has a finger on i, colon,
and enter. When I begin composing a document, much as I might on a typewriter on
the days of old, my hands revert to proper keyboarding technique. 

So, then, what gives? Is this a bad user interface? Yes. The user is slowed
down by either the fact that they must reconfigure the muscle-memory of their
normally-home-row typing scheme for the sole purpose of typing in vi, or be faced
with perpetual slowness with no speedup in sight. Emacs and nano are no better -- it



is dominated by excessive dependance on the control key with no alleviation in sight
for most one-control-key-having keyboard users (which, nowadays, consists of almost
every laptop sold on the market). However, is this truly bad? No, it is a consequence
of the design of the program and the hardware (in this paper, “the hardware” refers
to the terminal, not the parts in the computer itself that dictate its computing
performance) it is confined to. The design of the editors mentioned before was made
on systems that lacked certain key elements that we have on our keyboards nowadays,
the most notable of which is the distinct lack of function keys and certain modifier
keys. The meta key (or alt, if you prefer), at least in the school of design that is a
UNIX-style system, sends escape then the pressed key. For instance, if you wanted
to type meta-x on Emacs to show the command field, you could press meta-x proper
or press escape then x. Put simply, the UNIX model does not treat escape like its own
key. But, I hear the reader saying, vi uses escape to get out of input mode! Yes, this
is correct, and, this very realization is part of another point I raise about inconsistent
UI. vi is a "modal editor" and reflects a world of computing we now no longer
dominate ourselves with. 

Modal editors were common in the early days of computing featuring CRT-
based terminals. Before then, the common sight for an editor was a "line editor" --
examples include UNIX's ed, the CMS EDITor, and others. This was necessary as
terminals then were printing terminals (sometimes called teletypes). The user would
type in the command to go into input mode, enter whatever they wished to enter, then
press the enter key (or enter the special sequence) to get out of input mode and return
to command mode. Once in command mode, they could enter a variety of commands
to manipulate the file or save/quit. Now, the clever reader will identify this sounding
awfully similar to vi; indeed, it is. vi is an interesting stop in computing history, as
it is an incomplete product of the transition period from typewriter-terminal-designed
line editors to full-screen editors that would be common just a few years later. Some
editors, like VM XEDIT, provided a similar interface (but took it further). XEDIT can
be used both modally and interactively. One can enter an i on any of the command
fields beside each line to insert, d to delete, so on and so forth (the user can often
guess the command, funnily enough). They can then type in a blank line, or tab (note
the appearance of keys foreign to UNIX users now) over to the command field, type
save, or just press F3 to quit. Note the differing model here. This is part of the
argument that I would like to make: some computer systems have no clear standard
of usability, and don't fully use the hardware presented to them for maximum
functionality.

Let us consider this last point, as I believe it is the most important part of my



discussion. I will assume the reader is familiar with the old ways of Windows:
common user interface guidelines were seen as a semi-critical concern in software
design. This was thanks in no small part to IBM, who developed something in the late
80s called Common User Access -- CUA. This was essentially a collection of
common keybinds we now have come to know and love: control-C for copy, control-
V to paste, control-S to save, F1 for help, et cetera. While we often take these
keybinds for granted, consider the earlier examples of fragmented user interfaces
within the UNIX (and friends) world. Under the CUA model, programs on DOS,
Windows, OS/2, and mainframes (ISPF on MVS and VM/CMS fullscreen programs
like OfficeVision) featured similar keybinds. Programs like DisplayWrite/370 would
have had similar keybinds as DisplayWrite/2 on a PC; ISPF and the VM/CMS HELP
feature used very similar keybinds (F3 to go back a screen, F12 to go to the main
menu, F7 and F8 to scroll up and down, so on and so forth).

One of the consequences of a common user interface like CUA is that it can
stifle interface flexibility. Consider vi: whereas control-C and control-V may be
commonplace to PC software such as Word, vi achieves the same behavior with y and
p -- y to yank, and p to put. What mnemonics exist for control-C and control-V? Sure,
c is for copy, but, v has no clear meaning other than it is right next to the copy key.
x is for cut, which makes some sense, but, this is where the user interface design
models differ -- the vi software designers appear to have sought to place hotkeys
based on mnemonic and ease-of-remembrance based on their function, but, the reality
is more boring than that: vi is an extension of the ex editor, itself an extension of ed,
and, the keybinds vi uses are merely mnemonics for commands that would have been
seen on a line editor.

Even in the era of PCs, some programs featured vastly different user interface
models even after CUA was introduced. Take, for instance, the program I used to
compose this paper: WordPerfect. Granted, I am using the Windows version of
WordPerfect, but, the DOS versions were notorious for their bizarre user interface
design. Despite not following the unwritten standard of CUA, WordPerfect for DOS
cut its own path with heavy use of function keys with modifiers. Many users came to
love WordPerfect in the same way others came to love, for instance, Emacs or vi, but,
few found a truly adequate migration path to other word processing software after
WP's demise in the mid-90s. Despite there not being much of an option for users to
turn to that were familiar with its keyboard user interface, some programs replicated
the functionality of other aspects of its UI. This misplaced UI design mindset resulted
in many differences cropping up throughout PC software in the 90s; the effects of this
are still being felt today.



Consider, briefly, Microsoft Word: being a mainstay of personal computing,
backwards compatibility is paramount. The latest version of Word can read
documents from Word 6.0 (from 1994) with no trouble; most of the key combinations
still apply to this very day. Often, people fail to identify the source of these key
combinations: control-C to copy, control-V to paste, et cetera, are all IBM CUA
combinations. CUA is certainly dominant in the world of commercial-software-
powered PCs; the commercial UNIXes (for instance, IBM AIX) had management
programs that featured user interface designs that followed other UI designs (for
instance, smit on AIX is modelled after ISPF on MVS). Moreover, for a user of a non-
US keyboard, the key combinations remain the same; no matter what language
keyboard you are using, the key combinations remain in the same position. However,
one must ask, what user-interface standards exist in the UNIX world?

Recall the user interface model of vi. Despite being rather un-ergonomic (and
sometimes downright useless to users of non-US standard keyboards), it has
cemented itself as a standard for UNIX programs to model themselves after. Most
common are the h/j/k/l arrow keys; while this is not explicitly a problem if the user
is running on a local terminal emulator session under an X desktop (for example), the
user may incur massive issues attempting to use vi (or vim) over a telnet or ssh
session without key position remapping. This results in a user that is using a non-US
keyboard layout heavily confused attempting to use vi; something that could be easily
alleviated by using the real arrow keys on the keyboard, heavy use of function keys,
and using Curses's raw mode. 

Another point I wish to consider is how a user might learn to use these
programs back in their former years -- how would a user learn to use vi? If the user
comes from the PC world, they may press F1 for help. Unfortunately, F1 is about as
useless as throwing a paper airplane at the computer when it comes to vi, and, typing
help vi from the command line does not help the user any either (though it will
encourage them to read the approximately-as-useless UNIX manual page on vi). At
least with office software (word processors like WordPerfect, Microsoft Word, Lotus
WordPro, etc) of the past, they do possess an option to have the user run through a
tutorial. Where is the vi tutorial? Yes, vim has a tutorial, but, many users even find
that complicated and defer the tutorial for a YouTube video. 

In conclusion, I believe we, as programmers, should fully use the best tools we
have for constructing user interfaces, and stick to a standard; to not stick to a standard
is, in my eyes, against the user. While yes, the “user” of a modern Linux system is
more technical (most likely) than the average office-dwelling Windows user, there



is no excuse for over-complicated UI design as judged by end users. Overly complex
interfaces and programs scare off the “end user” and don’t encourage them to branch
out and try new systems. However, the reverse is also true and can present a “skill
ceiling:” a skilled operator can fly through Windows with only a keyboard thanks to
all the modifier key combos (alt-space, alt-tab, arrows, enter, space, alt-escape, etc).
Furthermore, we should not stick keys to mnemonics -- :wq may not line up at all
with the expected "mnemonic keys" intended to recall or abbreviate a function on a
non-QWERTY keyboard layout. Instead, we should spread the load out; use the
function key-oriented and modifier key-combo methods equally. We should also
place a strong emphasis on usability testing; without adequate usability testing, how
can we judge a user’s productivity in a program? Should we bend over for the average
user entirely? Has the “vi model” ran its course? Is this all a matter of personal
preference, or is there an actual objective science to this? 

In followup papers, I wish to discuss these questions.

This paper was made possible with contributions from users with the following internet aliases: notatypewriter,
averageemogirl, minneelyyyy, and possibly others. 


