The IBM System/360 Line

Document Number 0867-5309

August 8, 2025

Evie Cooper

Foreword

Some amount of the information in this guide originated in Dave Morton's excellent guide named "IBM Mainframe
Operating Systems: Timeline and Brief Explanation For the IBM System/360 and Beyond.” Most of my knowledge
lies in VM and VSE, whereas Dave's seems to be mostly in MVS. | hope this guide is useful to the mainframe
hobbyist community, and thanks to Dave for producing the original this booklet was inspired by! In addition, I

sourced knowledge from the following sources:

e Enterprise Systems Media z/Journal

e Lynn Wheeler's IBMVM Listserv post archive

e Various manuals on Bitsavers

e The CBT Tape archive

¢ "IBM Mainframe Public Domain Software Collection”

e Paul Pierce's System/360 website

e Melinda Varian's VM and the VM Community

e IBM program product announcements

¢ linas.org's Linux ESA/390 page

e My real-life experiences running these systems

e Marist Linux/390 webpage
e Argecy Corp's website

I will say that while | have tried to ensure the information presented in this guide is as accurate as humanly pos-
sible, there will inevitably be some errors. I'm a bit uncertain on some details surrounding the very early S/360
OSes, and | have placed disclaimers where applicable. Note that | was reading quite a bit of conflicting information
on specifically BOS/360, so read with caution and please alert me at once if you have a plausible correction (with

evidence, please!).

This document was formatted on SCRIPT/VS 1.4.0 with BookMaster Release 4, on z/VVM 4.4, on a Multiprise 3000
System/390, powered half by solar panels sitting on my balcony.

To contact me, email me at wec@bam.moe

Al statement: | did not use any generative Al, deep research tools, chatbots, or anything; | only used my hands and

the sources listed to produce this document.

2 Mainframe History

The

MainFrame:

Hardware

H wxifcwy/

Contents

Foreword 2

Figures 9

Mainframe Hardware 1

Origins 1
What is a mainframe? 1

The System/360 2

The System/370 2
Original S/370 and 370/AF 2
3033 3
3081/3083, 370/XA 3
4300 3
3090/4381 3
9370 3

The System/390 4
ES/9000 4
9672 4

The Multiprise Line 4
Multiprise 2000 4
Application StarterPak 3000 5
Multiprise 3000 5

PC Mainframes 5
Personal Computer XT/370 5
Personal Computer AT/370 5
IBM 7437 VM/SP Technical Workstation
9371 6
Personal/370 (P/370) 6
S/390 Processor Card and the P/390 6
S/390 Integrated Server 6

SystemZ 6

Emulation 7
FLEX-ES 7
ZPDT 7
Hercules 8
TurboHercules Controversy 8

5

Mainframe Peripherals 9
DASD Disk Drives 9
S/360 Generation 9
S/370 Generation 9
S/370 Generation FBA 10
S/370 XA Generation 10
System/390 Generation 11
System Z Generation 12
Tape Drives 13
2400 Series 13
2420 Model 7 14

Contents

3

3400 Series 14
8809 and 9347 15

3480 15
3490E 16
35900 16
3592 16
Line Printers 17
1403 17
2821 17
3211 18
3203 18
3618 18
3262 19
5262 19
4245 19
4248 19
6262 20
Console Printer/Keyboards 20
1052 20

3210/3215 20
Card Readers/Punches 21
1442 21
2540 21
3501/3521 21
3505/3525 21
Networking Devices 21
Channel-to-Channel Adapters 22
8232 (LAN Channel Station) 22
3172 (Nways Iterconnect Controller) 23
2216 (Nways Multiaccess Controller) 24
Open Systems Adapter 25
Non-Programmable Communications Controllers 26

2701 26
2702 27
2703 27
AWS2703 27

9370 ASCII Subsystem Controller 27
4331/4341/9370 Telecommunications Subsystem
AWSICA 28

2260 Display System 28
2848 Controller 29
2265 29

NCP Communications Controllers 29
3705/3704 29

3710 29
3725 29
3745 30

Communications Controller for Linux 30
3270 Display Controllers 30

3272 30
3271 30
3274 30
3174 32

Combination Controller/Displays 35

4 Mainframe History

28

3299 Multiplexer 35
3270 Display Terminals 35

3277 35
3278 36
3279 36
3290 37
3178/3179 37
3180 37
3191 37
3192 38
3193 38
3194 38
3104 38
3472 38
Printers 38

RJE Terminals 39
2780 Data Transmission Terminal 39
2770 Data Communication System 39
3780 40
3770 40

Early OSes - BPS/360, BOS/360, and TOS/360 42
BPS/360 42
BOS/360 42

DOS360, VSE, and zZVSE 44
DOS/360 and TOS/360 44

DOS/VS 44
DOS/VSE 44
SSX/VSE 45
VSE/AF 45
VSE/SP 45
VSE/ESA 46
z/IVSE 48
VSEn 50

0S/360, MVS, and zZ/OS 51
0S/360 PCP 51
0S/360 MFT 51
0S/360 MVT and TSO 51
Time Sharing Option 52
HASP and ASP 52
OS/VS1 53
OS/VS1 BPE 53
OS/VS2 SVS 54
OS/VS2 MVS 54
MVS/SE 55
MVS/SP 1.1-1.3 55
ISPF and SDSF 56
MVS 3.8) 56
MVS/XA 57

Contents 5

MVS/ESA 58

Version 3 58

Version 4 58

OpenEdition 58

Version 5 59
0S/390 59

Version1 59

Version 2 59
z/OS 59

TSS/360 and TSS/370 62
Origins 62
TSS/360 62
TSS's Dynamic Linker 62
Commands 63
TSS/370 63

RAX and MUSIC 66

RAX 66

MUSIC 66
The Filesystem 66
The Emulator 67
The Networking 67
The Emails 67
The Job Language 67

MTS 69
History 69
Computers Running MTS 71
Front-End Processors 71
Networking and MERIT 71
Job Spooling 72
Versions 72

CPICMS, VM/CMS, and zZVM 78
Origins: before VM 78
CP-40 79
CMS 79
CpP-67 79
CP/ICMS 80
VM/370 80
VM/370 Update Process 81
VM/370 Release 2 and Growth 81
CPREMOTE, RSCS, and VNET 82
VM/370 BSEPP and SEPP 83
VM/370 Release 6 and BSEPP/SEPP Release 2
VM/SP 84
PROFS 84
VM/SP R2 and R3 85
VM/Passthrough 85

6 Mainframe History

84

VM/SP HPO 86
VM/IXA MA 87

The OCO Announcement

VM/PC 87
VM/SP Release 4

87

87

WISCNET and VM TCP/IP

SQL/Data System

89

VM/SP Release 5 and 6

VM/IS 90
VM/XA SP 93
VM/ESA 95

Parallel Worlds

95

VM/ESA Version 2 96

zZIVM 97
zZIVM 3.x 97
zZIVM 4.x 98
ZIVM 5x 99
zZIVM 6.x 99

89

88

Mainframe Linux 101
Bigfoot Linux/i370 101

IBM Linux/390 104

Mainframe UNI Xes

105

Bell Labs UNIX/370 105
The Purpose 105

The Hacked TSS
Memory Model

106
106

Device Model 107
Deployment 108
Princeton UNIX/370 108

The Initial Port

Amdahl 109

uTs 109
IX/370 110
AIX/370 111
AIX/ESA 112

109

TPF and ACP 114
SABRE 114
PARS 114
ACP 115
TPF and TPF/ESA
ZITPF 115

115

IBM 9370: DPPX/370

117

Solaris on System Z

118

Contents

7

Popular Mainframe Programs 119
Customer Information Control System (CICS) 119
History 119
Other CICS Versions 120
Application Programming 123
Modern Features 129
CICS Applications 129
GDDM 130
Base GDDM components 130
GDDM-ICU 130
GDDM-IVU 131
GDDM-0OPS 131
GDDM-ISE and GDDM-VSE 133
SCRIPT/VS 133
OfficeVision/VM 134
OV/IVM 1.1land 1.2 135
ESA Calendar Feature 138
Callup 139
Release 3, 4, and the end 140
Standalone Utility Programs 141
Device Support Facilities (ICKDSF) 141
VM Format/Allocate (DMKFMT) 141
VM Standalone Directory Creation Utility (DMKDIR) 142
Standalone 1/0 Configuration Program (SA I0CP) 142
DASD Dump/Restore (DMKDDR) 142
OS DASD Initialization (IBCDASDI) 143
OS Dump/Restore (IBCDMPRS) 143
Standalone Utilities (ZZSA) 144

Afterword 146
Index 147

Glossary 148

8 Mainframe History

Figures

©COoNoaRr~WDNE

ONADAEADADNDERADNDREDNAEWWWWWWWWWWRNNRNNNMNNNNNRERRREPRRERPRPRP P
COWONOPIErWNPFPOOONITRARWNMEOONDDUORARWNMEOO®NUAWDNREO

VSE/ESA 1.1.0 logon screen 46

VSE/ESA 2.7.0 programmer-type menu 47

CSI TCP/IP stack running a ping from a blank CICS screen
z/VSE 4.1.0 logon screen 49

z/VSE 4.1 system console 49

VSEn 6.3.0 logon screen 50

OS/VS1 Release 7 BPE Release 3 starting under VM/HPO.
MVS/SP 1.3.4 IPL top message 55

ISPF/PDF user interface on MVS/SP 1.3.4 55

SDSF V1R2 on MVS/SP 1.3.4 56

Console of an IPLing MVS/XA 2.2.3 system. 57

ISPF on z/OS V1R5 60

SDSF displaying job output on z/OS V1IR5 60

48

53

z/0OS V1R5 Resource Management Facility performance reporting

TSS/370 Release 3 starting up 64

TSS/370 Release 3 user logon and logoff 65
MUSIC/SP ESA 5.3 logon screen 68

MUSIC's Full Screen Interface 68

MTS 6.0A user terminal screen 77

VM/370 Release 4 login screen 82

PROFS V2 R1.1 Main Menu 85

VM/Passthrough menu 86

VM/SP Release 4 logon screen 87

SQL/DS on VM ISQL 89

VM/SP Release 5 logon screen 90

VMI/IS logon screen (system built on VM/SP Release 5) 91
The original BASIC ELIZA on VS BASIC for VM 91
DisplayWrite/370 for VM 92

ISPF on VM/IS 92

QMF, a Ul for SQL/DS, on VM 93

PROFS V2 R1.1 Main Menu 94

VM/ESA V1R1 370 Feature logon screen 95
VM/ESA Version 2 Release 1 logon screen 97

z/IVM Version 4 Release 4 logon screen 99

z/VVM History -- zoom in! 100

Linux/i370 .INS load file 101

Linux/i370 parameter/command line file 101

A rare view of a running i370 Linux system 103
Amdahl UTS 1.0 running under VM/SP R5 110
CICS/VS 1.7.0 welcome screen (MVS/SP 1.3.4) 121
CICS TS 3.2.0 welcome screen (z/OS 1.5) 121
CICS/VSE 1.2 welcome screen (VSE/ESA 2.1.0) 122
CICS TS 2.3 welcome screen (VSE/ESA 2.4.0) 122
CICS for OS/2 3.1 welcome screen (OS/2 Warp 4) 123
CICS macro-level sample program (assembler) 124
CICS macro-level sample program (COBOL) 125
CICS macro-level sample program (PL/1) 126

CICS command-level sample program (COBOL) 126
CICS BMS map sample 128

Sample CICS map displayed on a 3270 terminal 129

Figures

9

51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.

GDDM C program that draws a demo menu 130
GDDM-ICU chart 131

Example GDDM-OPS presentation 132
GDDM-OPS presentation (extracted using GDFSAVE)
OfficeVision/VM 1.1 Main Menu 136

OV/VM 1.1 Calendar 136

OV/VM Document Style Choice Menu 137
OV/VM DisplayWrite/370 Memo Prompter 137
OVIVM 1.2 OVMAIL Menu 138
OfficeVision/VM 1.3 ESA Calendar Feature 139
CallUp Main Menu 140

Standalone ICKDSF 141

Sample 10CP definitions for a 3390 142
Example DDR run (copying a DASD) 143
Example IBCDASDI jobstream 143

Example IBCDMPRS jobstream 144

ZZSA main menu 144

ZZSA device list 145

ZZSA dataset list 145

10 Mainframe History

133

Mainframe Hardware

Origins

The road to commercial computing was fraught with confusion, failures, and false starts. By the mid-1960s, com-
puters as a machine that a business could purchase were starting to develop serious customer bases. The so-called
“third generation” of computers featured integrated circuits. In the mid-1960s, you could get a computer from a
variety of now-forgotten names:

IBM, who sold the 7090 (a large system), 1401 (a small system), and 1130 (targeted for low-cost markets); all
of these systems were replaced with the System/360

Burroughs, whose B5000 (and later B5500/B5700) led the way in computers that did not require heavy
assembly language usage to program; the OS (MCP) still lives on today

UNIVAC, whose 1107 and 1108 gained popularity as batch systems, lives on today as OS 2200 from Unisys

General Electric, whose 600 series (specifically the 645) was the birthplace of the highly-influential Multics
system; otherwise, GECOS was the OS used for batch loads -- GCOS lives on today (version 7 and 8, who are
somewhat different) as emulated systems

RCA (Radio Corporation of America), who diversified into computing and had reasonable success with their
501 series (their later Spectra 70 was compatible with the System/360)

CDC (Control Data Corporation), whose coming 6000 series would define supercomputing in the mid-1960s

NCR (National Cash Register, though this acronym is never expanded), whose computers in the early 1960s
saw some success in smaller customers

DEC (Digital Equipment Corporation), whose PDP (Programmable Data Processors) were popular in academia

What is a mainframe?: Though usually a colloquial term that refers to some kind of IBM-brand computer (at
least today), a mainframe generally refers to a large computer system with several distinct characteristics:

A distributed processing nature. The CPU need not directly drive peripherals, as it is attached to a variety of
coprocessors whose purpose is to driver peripherals for the host computer CPU(s).

Extensive teleprocessing capabilities. Mainframes can support many users (sometimes in the high hundreds
range), and, historically, this necessitated the creation of some kind of network to connect terminals to terminal
controllers. These networks were often interlinked with other networks (in the past, these were things like X.25
networks; later, it was the Internet)

Large storage arrays. In the early days, this often meant entire floors of buildings being filled with disk drives;
today, it means several racks of disks on larger machines, ranking in large capacities.

Purpose-built fault recovery. Mainframes have historically sought high uptime, and this is still true for today.
Paths to peripherals are often multipathed, and devices may be duplicated for extra reliability. The CPUs of
most mainframes are sometimes duplicated too.

An operations team. Being a large and complex system (often running a suitably large and complex OS), these
large computers are often kept by a number of operators.

Often times, people take computing today for granted. You can go to the computer store, and you can buy a CPU
from either AMD or Intel -- and any programs you write will work on either CPU, provided the OS ran on both is
the same (or is compatible). However, this was not always the case! If you bought a computer in the 1960s, this
were quite a bit different. You found yourself in a landscape of "one-model-machines” -- machines that, while
certainly rather capable, presented a hefty challenge when it came to porting software. There was usually only one
(or a few) model(s) of a computer in each CPU architecture, and this presented a rather difficult issue.

Mainframe Hardware 1

In that era, totally different computers were everywhere, as seen on the list above. If you were, for example, buying
a computer to print payroll checks and do other accounting tasks, an IBM 1401 would be fine. If you were doing
research or engineering tasks, that 1401 would be useless -- you'd instead find yourself juxtaposed between a choice
between an IBM 7040, DEC PDP-1, and a bunch of other computers. There was no reason to buy IBM, and IBM
knew this.

Because every CPU architecture in those days was different, you'd need to rewrite all of your programs when you
upgraded computers (as you might be upgrading from an IBM 7090 to a UNIVAC 1107)! IBM saw this void, and
wondered if they could build a line of machines (rather than just one machine) with a common CPU architecture.
That way, if someone bought a basic System/360, they could upgrade it later on and not have to rewrite any code.

While this certainly sounds silly today, this was seen as somewhat revolutionary back then. Likewise, the OSes
found on it had to be portable across machines -- this will be the primary focus of this booklet. With that out of the
way, let's begin!

The System/360

The 360 was an early computer, and it was not uncommon in that era to find systems engineers that were the direct
trained descendants of the original generation of computing pioneers. One of Howard Aiken's students was Dr.
Frederick Brooks, who would later become the director of IBM's System Architecture. When the 360 project came
up, Dr. Brooks was selected to be the lead of the whole project -- a tall order and a difficult task for anyone in that
era. He would later go on to win over 20 awards/honors, and even won the National Medal of Technology in 1985.
The principal architect would be Dr. Gene Amdahl, already known for his work on earlier (and smaller) IBM
computers.

The 360 project was also unbelievably expensive in that era -- it cost IBM 5 billion dollars; this put the project on
the map with giants of the era like the Apollo Project (which was NASA's project to put men on the Moon, of
which the salaries of the people involved was $5 billion too). Actually, the 360 project completely dwarfed Project
Gemini, the direct precursor to the Apollo Project, by 4 billion dollars. Needless to say, the 360 project needed to
deliver.

Competitors to IBM were rapidly catching up to IBM with similar machines to the 1401, at a lower cost. IBM
knew this, and development of the 360 coalesced around the early 60s and the hardware was officially announced
in April 1964. In 1965, the first 360 machines were shipped to customers. This was unbelievably fast, and for good
reason -- 60,000 people were employed to make this possible. A variety of models were launched then, ranging
from the tiny Model 20 (which itself was a subset of all other 360s), the entry-level Model 30, and the big powerful
Model 75. The Model 91 would come later in January 1966, and it screamed at 16.6 MIPS (million instructions per
second, a common measurement of mainframe CPU speed). All the while, the same software and 1/0 devices could
be used on all of these machines!

Possibly the most influential model of the System/360 line was the Model 67, with its optional virtual memory
hardware, that would set the stage for the online timesharing (and not batch-oriented) model of the successors to the
360. The Model 67 found itself embraced by the academic world, with many universities and research labs (like
Bell Labs) adopting it for their computing needs (and modifying it to suit their specific needs, too). The so-called
"DAT Box" (unrelated to the feature found on the 370/Advanced Functions machines that launched later) was
highly sought-after for these machines.

The System/370

Original S/370 and 370/AF: While the 360 was certainly successful, a successor was definitely in order. The
System/370 was announced in June 1970, with the first machines showing up at customer shops in 1971. By 1972,
the unusual lack of virtual memory hardware on the original 370s caused IBM to launch the 370/Advanced Func-
tion line -- these contained an infamous "DAT box" (dynamic address translation, the name for the memory man-

2 Mainframe History

agement unit on the 360; note that the 370's was different in design). These introduced new generations of the 360
OSes (the original 370 announcement just ran the 360 OSes, nothing new for the 370 itself), and upgrades for
earlier 370s that did not have the DAT box were available (the Model 155 and Model 165).

3033: The 370, being derived from the 360, had a rather famous 16 megabyte storage limit (storage being the
IBM term for what other computer platforms called "RAM"). As the 370 evolved throughout its life, the first major
gain was something called ECPS (Extended Control Program Support), which was hardware acceleration to certain
OS functions. Seeing that the address space limit was starting to become an issue. The 3033 (the 303x series was
the successor to the second-generation 370/Advanced Function machines) introduced a function called "Dual
Address Space" -- the MVS operating system (which will be discussed later) could use this to effectively double the
system's storage capacity (with plenty of caveats, of course).

3081/3083, 370/XA: Needing an actual address space increase that wasn't a bank-switching technique, the 3033
and 3081 (launched in October 1981) added a feature called "Extended Real Addressing" -- for the first time, it was
now possible to use 64 MB of real storage (the physical address bus now had 26 bits, rather than the infamous
24-bit limit). When the 3081 and 3083 launched, they also contained a totally new machine operating mode:
370/Extended Architecture (commonly called XA). This expanded the address bus up to 31 bits (both real and
virtual; the 26-bit 370 EAS systems were still limited to 24-bit virtual storage spaces), completely overhauled the
I/0 architecture, and changed how the system booted.

4300: During the early 80s, there were a variety of smaller air-cooled System/370s made. Here they are:
e 4321, announced 1979 and withdrawn in 1981, 8 MB max storage
e 4331, announced 1979 and withdrawn in 1981: 8 MB max storage
e 4341, announced 1979 and withdrawn in 1986: 16 MB max storage
e 4361, announced 1983 and withdrawn in 1987: 12 MB max storage

Paradoxically, the 4341 was not only more performant than the 4361, but had more storage! This was because the
4331/4361 were developed in Germany (by the VSE developers; as such, these machines had many microcode
features that greatly increased VSE performance through a mechanism called ECPS:VSE), and the 4341/4381 were
developed in New York (and targeted totally different workloads). All of these models utilized a 3270 as a console
in lieu of the earlier 3215s (see the chapter below for more information on these). The 4331 and 4361 had an
integrated DASD controller that drove a string of either 3310s or 3370s; these were FBA DASDs and no CKD
DASDs were available without an external channel-attached controller on this machine.

3090/4381: After the 370/XA launched, IBM announced Enterprise Systems Architecture/370 on the 3090E and
4381 machines in February 1988. This added additional addressing modes, 16 access registers (32 bits wide), and a
means for a program to use several virtual address spaces; this would later evolve in 1990 with the ESA/390 archi-
tecture.

9370: Note: the 9371 is not discussed here as it is different from the 9373/9375/9377; see the PC Mainframes
section for information on it

While IBM was doing great in the high-end systems department with the high-performance (and high-dollar)
System/370s and 370/XAs, the midrange department was still cornered by machines like DEC's VAX line. IBM
saw this, and too wanted to break through in that market. Designed by IBM Endicott in 1985 and released in 1986,
the IBM 9370 line was the first major computer that consisted of a CPU emulating a different CPU (in this case, an
IBM 801 RISC CPU emulating a low-end System/370). This machine was intended to be a "superminicomputer”,
suitable for engineering, scientific, and office use. These machines came in 3 different model classes, each progres-
sively gaining more support (with the high-end 9377s being able to run MVS/SP). Sadly, these machines did not
sell nearly as well as IBM thought they would, and have been relegated to "failed products” lists.

Mainframe Hardware 3

The System/390

ES/9000: The IBM mainframe line continued to grow consistently over time! When it was time to unveil the
next upgrade to the 370 in September 1990, IBM opted to launch a totally new architecture and line of machines.
The System/390, much like the System/370, would be a machine for the 1990s (like the 370 was a machine for the
1970s). The ESA/390 architecture would succeed the ESA/370 architecture, and the first new machine to bear it
was the Enterprise System/9000 (ES/9000) line. Gone were the old massive thick device connection channel cables
-- the System/390 introduced a fiber upgrade called ESCON (Enterprise Systems Connection). The ES/9000 line
featured rack-mountable machines, smaller air-cooled mainframes, and massive water-cooled mainframes. While the
ESA OSes (VM/ESA, MVS/ESA, VSE/ESA) could run on the ESA/370 3090 or 4381, the ES/9000 line was faster,
smaller, and cheaper.

The ES/9000 series featured 18 different models, as mentioned. The original 9021s were essentially converted 3090J
processors, but expanded with optional ESCON, sysplex coupling facility support, and the addition of a new
cryptographic coprocessor (which accelerated DES). Later models could have a Vector Facility array processor, the
cryptographic accelerator (the Integrated Cryptographic Feature), and a data compression accelerator. In addition, all
of the ES/9000s could be logically partitioned to subdivide the machine's hardware resources to run multiple OSes
simultaneously -- this also meant that there was a different method of device assignment (see the section at the back
for SA IOCP). The models fell into three main groups:

e 9021, a large watercooled machine that would replace the 3090
e 9121, an aircooled machine that would replace the 4381

e 9221, a rackmounted aircooled machine that replaced the 9370

It should be noted that the 9221 was originally a System/370-only machine (on models 120/130/150) and was later
upgraded with ESA/390 capability with the ESA Option, shipped July 1991. The same team that designed the CPUs
in the 9221 used their experience later to design the CMOS 9672s.

9672: The ES/9000 would later be replaced by a machine using a more advanced digital logic technology
(CMOS, in lieu of ECL, used by the ES/9000s). These machines bore the model number 9672. There were six
generations of these machines, and a new one came out every year from 1994 to 1999. Each one got progressively
faster, and gained more storage. The last to support 370-mode guests was the G3. The G5 added support for IEEE
754 floating-point, and the G6 featured one of the fastest CPUs on the market.

The history of the 9672 was marked originally by two machines (both launched in 1994): the Parallel Transaction
Server, and the Parallel Query Server (model number 9673). Later in 1994, these two machines would be remarked
as the Parallel Enterprise Server

The final 9672s added something called the Open Systems Adapter; this was essentially a directly-attached card that
emulated Ethernet and Token Ring interfaces on the mainframe. This would later evolve with the successor machine
line (the System Z).

To facilitate intercommunication and form a sysplex, the 9672s were often seen with the 9674 Coupling Facility.

The Multiprise Line

Multiprise 2000: Launched in September 1996, the Multiprise 2000 was essentially a cut-down 9672 G3. It
(alongside the G3) was the last machine to support a 370-mode IPL, with all newer machines requiring a native
ESA/370 or ESA/390 OS. Being a cut-down 9672 G3, it had half the cores and slower cache; alas, it used nearly
the same physical form as the machine it was based from. Disks and tapes were connected via standard ESCON or

4 Mainframe History

parallel (bus and tag) channels. The line was upgraded on October 1997 with an 11%-faster MP2000. The MP2000
had CPU model number 2003.

Application StarterPak 3000: Essentially a Multiprise 2000 in a half-height case, the AS3000 was a short-lived
product that paved the way for the later Multiprise 3000 (one of the best-selling System/390s made). The AS3000
did not contain an integrated Support Element; this was provided by a modified IBM Aptiva workstation cabled to
the S/390 CPU card cage with a thick cable (not unlike the one seen on the MP3000 later). These had no integrated
I/0 features outside of a disk array (see the Mainframe DASD chapter below for more information on this), an
integrated 4mm DAT tape drive, an OSA, and 3270 consoles on the Support Element. The front of the machine that
held the power switch contained the CPU and its support cards, and the back contained a disk array plus 4mm tape
drive (all attached via standard parallel SCSI). The AS3000 had CPU serial 3000.

Multiprise 3000: In September 1999, the Multiprise 3000 was launched -- this half-height compact machine
featured partially-emulated 1/0 and a PCI bus. The partially-emulated 1/O consisted of the P/390 device emulators,
but the system also contained a real disk array (or two, if the user chose such a configuration) that was driven by
the S/390 1/O processor: it was considered a "direct system device", wherein the S/390 CPU drives a card present in
the machine that emulates CKD DASD with an SSA RAID array. FBA emulation was not possible; the user would
have to use the (much slower) emulated 1/0 devices to achieve this. The CPU itself was derived from either the
System/390 9672-R16 (the 7060-H30 and 7060-H50) or the 9672-R26 (the 7060-H70).

There were actually two Multiprise 3000 models that were made but barely sold outside of IBM: the 7060-H55 and
7060-H75 (built on the 9672-R16 and 9672-R26 platforms, respectively). These were different from the public-sold
7060s as they actually had Open Systems Adapters. There were several of these machines sold outside of IBM
(one notably to the City of Los Angeles's Board of Water and Power).

The System/390 Integrated Server was launched before the MP3000 in 1998, but it was essentially a P/390 (dis-
cussed next). The MP3000 had CPU model number 7060.

PC Mainframes

Throughout the years, IBM has always had a fascination with producing PC-based mainframe-compatibles. These
allowed a desktop-sized machine to run mainframe-native software, albeit at significantly reduced performance.
Here are those machines:

Personal Computer XT/370: Based on the IBM 3270 PC (a PC that could emulate an IBM 3270 terminal), the
XT/370 contained a dual-board processor card (featuring two Motorola 68000s) with one of those two boards con-
taining 512 KB of mainframe storage. In addition, a 3270 emulator card was provided for talking to a host
mainframe (as this was not entirely a free-standing machine, but more of a "smart terminal" that just so happened to
run 370 code on it). The card stack ran VM/PC Control Program, which itself was a cut-down version of VM/SP
(which we will definitely discuss later). The XT/370 was extremely slow, registering 0.1 MIPS (thanks in no small
part to the fact that two 68000s emulated the 370 CPU, while a modified Intel 8087 provided floating-point
support). Nonetheless, it was quite a fancy machine considering the design constraints the engineers faced in
October 1983.

Personal Computer AT/370: Launched in 1984, the AT/370 was based on the Personal Computer AT, and was
somewhat upgraded. The PC/AT featured 16-bit expansion card slots (the ISA bus), and ran 60% faster than the
XT/370.

IBM 7437 VM/SP Technical Workstation: Launched in April 1988, this machine was a PS/2 Model 60/70/80
modified with a Microchannel card bearing a 370 CPU. This machine ran full VM/SP (again, to be discussed later),
and was intended to hook up to a 5080 Graphics System (which connected to the machine with another Micro-
channel card). These machines would run CATIA or CADAM, and it is said that they had the same performance as
a single-terminal 9370.

Mainframe Hardware 5

9371: The 9371 was an important stepping stone for what would later evolve into the machines show below;
based on the earlier 7437 technology, the 9371 leveraged the 801 RISC CPU (like the other 9370s) but did not have
any real 1/0 devices -- those were emulated by a 386 CPU running OS/2. Models 10 and 12 were MCA cabinets
that used that 386 running OS/2 for device emulation (and, as such, the DASD consisted of a MCA SCSI card
hooked up to some SCSI disks), whereas Model 14 had more of a PC emphasis and unlocked the OS/2 side for
running nearly any application (both DOS and 0S/2).

Personal/370 (P/370): Based on the earlier 7437 CPU card, the P/370 (which launched in November 1989) was
intended to run any 370 OS (so long as it supported FBA DASD, which meant no MVS) on either a PS/2 (running
0S/2) or an RS/6000 (running AIX). Like the 7437, all the I/O devices were emulated, but the user could choose
to also add a 370 channel card to connect real I/O devices. The P/370 was much faster than the 7437 and it actually
rivalled a low-end 4381 -- it scored about 4 MIPS.

S/390 Processor Card and the P/390: Launched in 1995, the S/390 Processor Card provided an ESA/390
CPU and 32 MB of main storage. This would be inserted into a MCA-slot-bearing PC or RS/6000, but a PCI
version came later. There was a third version called the P/390E that featured 256 MB of storage, and a 1 GB P/390
(these are extremely rare) was also made.

S/390 Integrated Server: In November 1998, IBM launched a machine that was a Pentium Il server
(uniprocessor) with a P/390 card. This so-called Integrated Server used the same chassis as the MP3000, but had
less performance; it did, however, have the ESCON and parallel channel capability. Alas, this machine was not very
performant and did not sell well.

System Z

Seeing that the ESA/390 architecture was aging in the late 90s and was still handicapped by the 2 GB storage limit
(bought about by the 31-bit address space introduced with the 370/XA line), IBM sought a upgrade. This was
developed in 1999 as "ESAME" (ESA Modal Extensions), but was eventually renamed to the z/Architecture. The
machines from this line are known as System Z, and the first one was the zSeries z900. Based on the earlier 9672
G6, this machine launched in December 2000 with either 12 or 20 processors (16 of which could be defined as
central processors, with the leftovers being reserved for 1/O duties). The z800 (lower-end than the z900) would
launch in 2002 to provide a lower-end model; all of the original zSeries machines before the z14 could still operate
in ESA/390 mode. Even then, a superscalar Z CPU did not exist until October 2003 -- the machine that introduced
this (the z990) was a complete redesign of the Z CPU (that featured new features like out-of-order execution,
NUMA, etc) that was not based off of the earlier 9672 architecture.

The System z9 was released in July 2005, bearing the earlier new Z CP but with many upgrades. The zAAP
acceleration engine was added, which accelerated Java applications. There were two lines launched: the z9 Business
Class and the z9 Enterprise Class (with the z9EC being the bigger of the two). This would also be the case for the
710, which launched in February 2008 (EC) and October 2008 (BC); the z10 was codenamed the “eclipZ” as its
clock speed was supposed to eclipse the commonly-available PC servers at the time.

The successor to the z9 and z10 was the zEnterprise line, of which there were 4 submodels. Launched in July 2010,
the 2196 was the enterprise-class machine (clocked at 5.2 GHz) whereas the z114 was the business-class machine
(clocked at 3.8 GHz). The z114 came in two physical varieties: the book-style machines had the same physical
configuration as the late-generation 9672 machines, whereas the non-book configuration was native to the z114.

As hardware development rolled on, the z13 launched in 2015 to great avail. Though the CPU clock speed did not
meaningfully increase, the cache and memory controller were improved. This generation also added a new variant
of the Vector Facility, modelled somewhat after SSE on Intel/ AMD x86 CPUs. The steady architectural improve-
ments made around this time started to solidify the System Z line as a rather fast computer, as opposed to the
earlier view of “lots of 1/O, but a weirdly slow CPU.” The processor elements drove DDR3 RAM, in an array
somewhat like a RAID disk array.

6 Mainframe History

Scoring a 30% total-chip (with a 10% per-core) speedup, IBM unveiled the z14 in July 2017. Of note was the
massive die shrinkage; the z13 was fabricated on a 22nm die process, and the z14 was fabricated on the then-new
14nm process -- this meant better power efficiency! Each processor package could have up to 10 active cores, and
each core supported two-way simultaneous multithreading (readers may be familiar with Intel's HyperThreading
scheme, this is similar). Rather than doing what IBM had been doing for years and having dedicated Crypto
Express cards, the z14 processor elements now had their own cryptographic processors (called CPACFs)... for each
core!

The new vector facility introduced one generation before gained packed-decimal SIMD support (which boosted the
performance of COBOL and PL/I applications that were somewhat vectorized), and the memory controller was
replaced with a DDR4 one. Around this time, IBM added support for System Z to upstream LLVM/Clang, and this
included native support for the z14.

Gaining more and more performance (and also more and more modularity), the z15 was announced in September
2019. Doubling the cache sizes and gaining a new data compression coprocessor (similar to the earlier crypto
coprocessors), the number of processing elements per package grew to 12. These sold somewhat well, and were
noted to be rather performant compared to their predecessors.

In 2021, when Al was starting to become a big thing that caused every company to shift their marketing focus to it,
IBM announced the z16 (with the CPU being called the “Telum”) and made it available for purchase in 2022. This
was the first CPU to contain a crypto coprocessor, vector coprocessor, compression coprocessor, and now a neural
network coprocessor! These were programmed with instructionns called NNPAs (Neural Network Processing
Assists) and were implemented at a very low level. Though nobody rushed out to buy mainframes to train and run
Al models on, the reliability of the processors (and their newfound ability to run ML inference during normal z/OS
operations) led many Z customers to consider (and often follow through with) adding ML features to various appli-
cations.

Seemingly not much more performant than the z16, the z17 (launched in April 2025) gained more support for ML
features. In the mid-2020s, Al chatbots and assistants were all the rage; IBM grew their earlier Al support but
targeted it for true business workloads (analyzing medical images, computing the risk of lending out a loan, things
like that). As if the CPU was not already accelerated enough, the Spyre ML accelerator was released alongside the
z16, and was a PCle card that worked tightly with the host CPU to accelerate ML workloads.

Emulation

Throughout the years, there have been several attempts to emulate the z/Architecture as a logical successor to the
P/390. Here are some of the extant emulators:

FLEX-ES: Fundamental Software launched an emulator in 2005 that was tightly-controlled and tightly-licensed,
and is the only emulator that IBM has licensed for production workloads. In the mid-2000s, an Intel PC-based
server could easily outperform an old System/390 (especially an old low-end ES/9000), so IBM ensured FLEX-ES
was somewhat difficult to acquire.
zPDT The zPDT is actually a family of emulators:

e The zPDT proper

e ZD&T Personal Edition

e ZD&T Enterprise Edition
The original zPDT is a PartnerWorld ISV offering that allows customers to run z/OS 1.6, z/VSE 4.1, and z/TPF (all

listed versions are "and future versions™). This is intended only for application development, and is not licensed for
production workloads; strangely enough, it is against the license terms to publish benchmarks of the zPDTs.

Mainframe Hardware 7

The ZD&T (of which there is also an Enterprise and Personal Edition) is intended as a, as its name expands out to,
as a "Z Development and Test environment. Many hobbyists petitioned IBM to produce ZD&T Personal Edition,
the result of the infamous “IBM Corporation mainframe hobbyist license” quest of the early 2020s. Like the zPDT,
this runs on x86_64 Linux. There is, however, a ZD&T Enterprise Edition, as well as a System Z version that
utilities KVM on Linux -- this version allows native speed execution of System Z OSes while emulating storage
and network devices entirely on a Z host. The original zPDT has the CPU model number of 1090, and the ZD&Ts
have a CPU model number of 1091 (that is, the CPU model number returned to the guest OS).

In 2025, IBM (to much controversy) discontinued the zPDT products in favor of a new cloud-hosted platform.
Many people found this to be a tone-deaf move on the part of IBM, but few have an underlying understanding of
the new software stack. In reality, the new zPDT replacement is actually a System Z version of the zPDT that runs
its workloads under KVM (on Linux). All of the I/O devices are emulated, and, when the “zPDT Enterprise
Edition” was released, people discovered that it provided a way to run z/OS on systems without CKD DASD
(which, surprisingly, is a major issue in the mainframe community for some people -- some people have
mainframes that use the built-in zFCP fibre channel adapter and create emulated FBA DASD drives under z/VM).
This is because, as mentioned, all 1/0O devices are emulated on this System Z zPDT.

Hercules: Seeing a need for a good open-source emulator for the 360 line, Roger Bowler started the Hercules
project in 1999. Many other people would contribute to it over the years, and the current most-advanced version is
"SDL 4.x Hyperion." It should be noted that Hercules is famously “not legal”

for running production workloads on, and its surprisingly good performance on modern machines has caused IBM
to fear it since its inception; there are many stories floating around the community of IBM cracking down heavily
on Hercules installs on IBM corporate computers, as well as fearmongering in the community that running
hobbyist/personal installs of IBM OSes on Hercules is sure to result in trouble; there are, of course, companies in
the wild that have been known to (at least temporarily) run a production workload on Hercules (at least as a
failover option). Since the P/390, zPDT/ZD&T, and Hercules all use the same DASD image file form (which is
sometimes even found on real DASD arrays, the likes of which can be found in the S/390 IS, the MP3000, and the
Bustech DASD emulation products).

Hercules has had an interesting history. Over the years, IBMers have constantly derided it as “piracy,” but many
mainframe hobbyists have found it an indispensable tool (as running an early System/370 in your house is simply
not a feasible thing to do, and P/370s are very rare). In the early 2000s, many mainframers (in the so-called real
world, i.e. real mainframe customers) started to evaluate using the emulator as a disaster recovery platform. Not
before long, some companies realized that it outsped low-end System/390 machines (like the Integrated Server
3006) on reasonably-fast computers... and promptly realized they could save a decent bit of money by running their
workload on an emulator. Since it used the same DASD image format as all of IBM's emulated DASD systems
(like the P/390 and similar), migration was not difficult -- you could also use real SCSI tape drives with Hercules
and restore dumps of something like a period-accurate DASD array to the emulated disks.

TurboHercules Controversy: 2009 marked the peak of IBM's efforts to crush Hercules when one of the key
Hercules developers (Roger Bowler) founded a company in France called TurboHercules. This enhanced version of
Hercules was not only much faster (scoring apparently over 3200 MIPS on an 8-processor Intel Nehalem system
clocking in at no more than 3 GHz), but unbelievably cheap. As such, Bowler asked IBM to start licensing z/OS to
run on TurboHercules in July 2009. IBM did not take kindly to this; they became to be rather scared, and, in March
2010, TurboHercules began to file a complaint with the EU regulators. Bowler's company argued that IBM was in
violation of EU antitrust laws, as IBM was limiting their OSes to only run on IBM hardware.

Surprisingly, Microsoft actually invested in TurboHercules in November 2010. Unfortunately, the EU government's
probe into the antitrust allegations was closed in September 2011... with no action whatsoever. The company would
end up fizzling out (certainly under major threat from IBM), but TurboHercules's motives live on. Most small VSE
systems could likely be migrated to run on Hercules if 21st Century Software (the current owners of the VSE line)
would allow customers to do so.

8 Mainframe History

Mainframe Peripherals

DASD Disk Drives

Mainframes were (and still are) well-known for their rather large amounts of disk storage. On the IBM System/360
family, the DASDs (that is, Direct Access Storage Device) are of a CKD (count-key-data) architecture. Unlike the
HDDs and SSDs you are likely used to, CKD DASDs used a format wherein each data record stored on the disk
could vary in length. This meant efficient utilization of disk surface area and good feature support for the record-
oriented storage interfaces present on the mainframe OSes.

S/360 Generation: The first hard disks introduced with the System/360 were adapted from the earlier 7090
peripheral set; these included:

2302, an adapted 1BM 1302 disk modified to work with the 2841 disk control unit, and was introduced in 1964.
112 MB.

2311, a similar device that used a removable disk pack. Announced alongside the 2302, it hooked up to the same
control unit and several manufactures built compatible units. 7.5 MB.

2314, a 9-drive array introduced on 22 April 1965. Looking somewhat like pizza ovens, the removable-back disk
design quickly became a success for IBM (and other manufacturers who wished to make competitive products).
This disk storage system quickly became the default disk array of the System/360, and its large size combined with
high reliability (for the day) set the stage for IBM's future dominance in hard disk technology. IBM later released
the 2319, which was a 2314 with one drive assembly missing that was announced in 1970. The purpose of this
product is unclear; it had a much lower rental price than the 2314, and could directly attach to the integrated
storage controller on the System/370 135 or 145. 29 MB per module.

S/370 Generation: By the time the System/370 was available, hard disk technology had come a long way. These
new disks included:

3330, the new disk drive array for the S/370. Announced in June 1970, the product line also launched with a new
controller (the 3830); each controller could operate up to 8 disks. The second model of this product (launched in
August 1972) introduced the 3333, which included a disk string control unit (a “string” being a rack of up to 8
drives in a row sharing a controller); this meant the string itself did not have to directly connect to the 3830 control
unit. The 3330 line also introduced a real-time error-correcting code, making the product even more reliable than
the 2314. IBM launched a double-density version of the 3330 (3330 Model 11) in 1973. 100 MB (single density),
200 MB (double density).

2319, which was a 2314 with one drive assembly missing that was announced in 1970. The purpose of this product
is unclear; it had a much lower rental price than the 2314, and could directly attach to the integrated storage con-
troller on the System/370 135 or 145. 29 MB per module.

2305, a fixed-head storage drive that was often (incorrectly) called a "drum", introduced in 1970. Unlike other
DASDs we will discuss, this used its own model of control unit (the 2835) and was constructed such that there was
a fixed head above every track on the disk. The disk assembly looked rather odd, and this device was not replaced
by any other similar device. These were very sought-after on the System/370 Advanced Functions systems, where
the virtual storage features allowed for paging out to disk; the faster the disk, the faster the machine. The seek times
on these are surprisingly low: 2.5 milliseconds on a single-density model, and 5 milliseconds on a double-density
model. 5.4 MB (single-density), 11.2 MB (double-density)

3340, a fixed-disk (i.e. non-removable) disk subsystem famously called the Winchester (with a 30 MB capacity and
an average 30 millisecond seek time, people joked that it shared a number with a Winchester rifle) introduced in

Mainframe Peripherals 9

March 1973, any of the disks can function as the head of a disk drive string (but the 3344 that was launched
alongside the 3340 could not serve as a string head, requiring attachment to a 3340). The disk modules were remov-
able, but the disks were not; that is, when you took the disk apart, you could remove the storage mechanism but not
extract the disks from the head assembly. The hardware design this disk pioneered became the standard for later
disks (especially those of smaller design): since the heads were always over the disk, the disk could spin down and
stop while the heads were parked as close as possible to the center hub of the disk platter stack. This would be
replicated by hard disks in PCs later, hence the colloquial term for a PC hard drive that was common in the 80s: a
"Winchester disk." Introduced in March 1973, and was compatible with the 3830 Model 2/3 from the earlier 3330.
34.9 MB (single-density), 68.9 MB (double-density).

3350, an evolution of the 3340 introduced in 1975 -- they even looked the same. Each disk was actually two disk
units side-by-side, identifiable because every other unit in a string will have a power switch. There were several
models of this disk (all with the same capacity): A2, A2F, B2, B2F, C2, and C2F. The A2 and A2F disks had an
additional circuit board mounted in them that allowed them to function as the head of a disk string; this
functionality could be enabled or disabled with a switch. All strings would start with an A2/A2F disk, and then
could be followed by up to 3 B2/B2F disks or 2 B2/B2Fs with one C2/C2F. The C2/C2F disks were special: they
contained an extra controller that functioned as a hot-spare (the disk units had no such hot-spare functionality; this
would only be seen with later disks backed by RAID arrays) if the controller circuitry in the A2/A2F failed. The
"F" models featured a fixed head that remained stationary over the first 5 cylinders of storage; the clever systems
programmer would position a JES2 checkpoint dataset, TSO swap dataset index region, or MVS paging dataset
index region and get a cheap performance boost. 317.5 MB.

3375, a CKD version of the 3370 (discussed below). The controller circuitry was slightly different, but otherwise
unchanged. 409.8 MB.

S/370 Generation FBA: Something new was introduced for the IBM 4331/4341 in January 1979: a vastly
simpler architecture of disk that used fixed-byte sectors (hence the acronym Fixed Block Architecture). These are of
the same design as standard PC HDDs (and their emulatory counterpart SSDs). MVS required CKD DASD, but
VM, VSE, MUSIC, Linux, and AIX/ESA could use FBA disks instead. For some customers, this saved a lot of
money; for others, it was a headache, as it meant they were stuck probably running VSE and unable to easily
upgrade to MVS.

3370, the first FBA disk introduced alongside the 4331/4341 (and also the System/38). Interestingly enough, it was
the first hard drive to ever use the thin-film-head technology that is now standard on HDDs. These connected to an
integrated DASD controller within the 4331/4341. 285.6 MB (model A1/B1), 364.9 MB (model A2/B2)

3310, a FBA DASD for the 4331. Launched in January 1979 alongside the 3370, these also attached to an inte-
grated controller on the 4331; not many of these were sold. 64.3 MB.

9332/9335/9336/0671, some FBA disks seen alongside the 9370. These were SCSI disks announced in October
1986, and were attached to the host computer using IPl. The 9332 used an IBM 0667 SCSI disk; the 9335 used its
own disk; the 9336 used an IBM 0681 SCSI disk. The 0671 was a bare SCSI disk, attached to an IPI protocol
translator (much like the rest of these disks), and then attached to the host computer. 9332 = 184 MB (single-
density) or 284 MB (double-density), 9335 = 412 MB, 9336 = 471 MB (single-density) or 856 MB (double-density),
0671 = 319 MB

S/370 XA Generation: While 3350s were often still used on the 370/XA mainframes, the most dominant model
used during this hardware generation was the...

3380, a large disk introduced in June 1980. The disks were constructed in a rather interesting way: each disk unit
itself held two actuator mechanisms, and those could access up to 630 MB; put together, both provided a capacity
of 2.52 GB per disk unit (for the confused, this resulted in each physical disk being split into two volumes, so, the
OS would see two DASDs at two sequential addresses of 630 MB each). There were manufacturing issues (specif-
ically with regards to lubrication), so the first disks shipped in October 1981. The string configuration was similar

10 Mainframe History

to the 3350, wherein a model A disk could start a string and attach to up to 4 model Bs. This product was also
introduced along with a new storage controller: the 3880. When properly configured, a 3380/3380 pair could
process two 1/O operations simultaneously! A double-density model was introduced in February 1985, and a triple-
capacity model was introduced in August 1987. If connected to the later 3990 control unit, it is possible to get a
quad-path string (which can handle 4 operations simultaneously). There were three types of models of 3380: the
model As could start strings and be string members, the model Bs are string members, and the model Cs are special
model As that have in-built controllers and can therefore attach directly to a parallel block channel (i.e. a
bus-and-tag cable). 630 MB (A/B/C), 1.26 GB (E), 1.89 GB (K)

System/390 Generation: The S/390 saw the last physical mainframe disks that implemented low-level CKD
(humorously called a SLED, a Single Large Expensive Disk). There were a few landmark products seen here:

3390, a series of disks that used pressurized sealed disk assembles that were driven with brushless DC motors (as
opposed to AC motors, seen on earlier models); introduced in November 1989. Strings were also different: a model
A was placed in the middle, and up to two model Bs can be attached to the left and right of it. A model A can
have 4 or 8 disk drives within it, and a model B can have up to 12; one could then attach up to 2 strings to a 3990
(the new controller introduced with the 3390) and have a disk subsystem of 64 disks. 946 MB (model 1), 1.82 GB
(model 2), 2.83 GB (model 3)

9345, an unusual and rare CKD DASD array comprised of specially-designed 5.25" drives in November 1990.
These were part of IBM's Supercomputing Systems Extensions project, and these were the first hard drives to use
magnetoresistive heads (which is the current standard today). These attached to the 9340 control unit, and it dif-
fered from a 3390 in the sense that it completely lacked the nonvolatile cache. These were often seen on ES/9000
systems. 1 GB (model 1), 1.5 GB (model 2)

RAMAC and RAMAC |1, two poorly-named products (no relation to the IBM 305 RAMAC that was the first hard
drive ever), were RAID-5 arrays for System/390s. There were two versions of both: one model attached to a 3990
Model 6 controller, and another model had an integrated controller. Each unit consisted of a rack with 16 drawers,
and each drawer held 4 drives. These were IBM Ultrastar XP type SCSI drives, using magnetoresistive heads. There
was an interesting design fluke with these; each 3990-6 controller could only connect to one RAMAC/RAMAC I
array, and could only address up to 180 GB. If you chose to get the integrated controller model, you'd save about
$75,000, but you would lose a bit of performance and caching provided by the 3990-6. Since most mainframe
shops wished to exceed 180 GB of disk capacity, and the only option was to buy two controllers, IBM sold two
3990-6es for the price of one! The RAMAC Il launched in July 1995.

These machines held an integrated disk array controller that assembled 3390 volumes from the RAID disk arrays.
The controller assembled a massive array from all of the disks, and there were several SCSI controllers within it to
spread the load. The choice of a RAID-5 array (with the antonym to RAID being SLED) lowered costs
significantly, and the increased performance meant that ESCON channels could finally be saturated with throughput
with disk operations. Since these could handle up to 4 ESCON channels, performance was impressive for the time.
This technology would become the foundation for future RAID arrays IBM provided, and rumors swirled about a
RAMAC replacement that used SSA disks. This would materialize as smaller products found in the Multiprise line
first, and would get its release 5 years in the future.

Multiprise 2000 Disk Array, and you can probably guess which System/390 it was found in. Remember, the
Multiprise 2000 was a cut-down System/390 Parallel Enterprise Server, and the integrated disk array consisted of
two rackmount parallel SCSI disk enclosures that held a total of 16 disks. Two I/O cards would be inserted into the
S/390 CPU's 1/O card cage -- one with 68-pin SCSI connectors, and another with control logic in it. These were
essentially cut-down derivatives of the RAMAC II, and functioned in the same way. The way the S/390 CPU
accessed the disks was also interesting: when the channel path was defined, it would be defined as an IBM
CorporationSD" (a Internal System Device). When the CPU was initialized, it would begin to directly communicate
with the disk controller cards without any intermediary ESCON channels.

Mainframe Peripherals 11

Multiprise 3000 Disk Array, the successor to the Multiprise 2000, also had a revamped disk array. As mentioned in
the section on the MP3000, this was done by having an IBM SSA (which was big at the time, SSA stands for
Serial Storage Architecture and was the engineering precursor to technologies like SATA and SAS) controller
present on the PCI bus within the cabinet. When the mainframe CPU is initialized, it grabs control of the card
through a card on the PCI bus called a “camel card" (for the confused, the S/390 CPU would talk to the camel card,
and that would allow it to talk to both the emulated devices on the Support Element and the SSA RAID card). Disk
I/O operations were done by the S/390 CPU itself, and this reduced the hardware demands. SSA disks were much
faster than the older parallel SCSI disks, and each 18.2 GB disk within an array (the MP3000 cabinet could
accomodate two arrays, with more attachable externally) summed to about 73 GB per array. While the S/390 CPU
was running, the OS/2 Support Element would have to communicate with the S/390 CPU (through the camel card)
to configure the array; the array could be configured with the OS/2-native SSA configurator program while the
S/390 CPU is stopped, however. The lessons learned from the RAMAC I, MP2000, and MP3000 disk arrays would
all be orchestrated together in the successor product.

System Z Generation: When the System Z came out, the RAMAC Il was seen as obsolete. Improvements had
been made, and the most impressive (performance-wise) of those improvements came from, of all things, the
Multiprise 3000's array. Despite it not sounding like much, it was a truly impressively performant solution for the
time. There were two models of disk server that followed this:

The Versatile Storage Server, released in 1998, was a transitional product that bridged the engineering gap between
the RAMAC and what came next. This was developed concurrently with the MP3000 disk array, and was an
adapted/enlarged version of that technology (minus the bus-mastering PCI SSA RAID card). The 2105-B09 VSS
held up to 64 SSA disks, and these were attached to some VSS storage processors that provided an ESCON inter-
face. If 64 disks wasn't enough, the customer could also purchase the 2105-100 expansion rack: this held 112 disks.
While a commercial failure, it would see its primetime in the subsequent product.

The Enterprise Storage Server, often called the Shark, was truly an impressive product. For one, this was not just a
mainframe storage array! The ESS model F10 and F20 could be equipped with a variety of host adapters (that is, a
peripheral interface circuit card that provided an emulation of a disk; for example, it could be a "SCSI target”, and
show up as a number of disks to the attached computer). You could use:

e UltraSCSI (i.e. SCSI Ultra-3/SCSI-160)
e Fibre Channel (original 1.25 gigabit Fibre Channel)
e FICON, the new System Z peripheral interface

e ESCON, since many System/390s were still in use when this product launched

The architecture of this was a modular evolution of all of the technology IBM had sold to that point. The ESS
consisted of two clusters, able to communicate with each other through a shared cache. Each cluster attached to up
to 4 device adapters, and these attached to the SSA disk loops in a rather odd fashion. Since an SSA loop had a
ring-in and ring-out port, cluster A device adapter 1 connected to ring-in, and cluster B device adapter 1 connected
to ring-out. The clusters connected to a Common Parts Interconnect bus that attached to the host adapters seen in
the above list.

The controller could assemble RAID arrays from the disks and export volumes, or the disks can be directly
exported to the host adapter (just not in CKD ESCON mode, since that required DASD emulation, only in FBA
mode). AIX and TPF both had measures to mirror disks/recover from failures, so the slight performance boost
afforded by this technique was worth it for some customers.

The ESS was a hit, not just for mainframes, but also broke through to other storage demand markets. People used
these on AS/400s (as they supported the sector sizes required for such a thing), high-end UNIX machines from
Digital/Sun/HP/Data General/Silicon Graphics, PC-based servers running Windows NT or NetWare, and even those
Sequent SMP NUMA-Q minicomputers. Multiple computers could even be placed on the same SCSI bus, simply by
changing the SCSI ID of each host adapter; this let users get even more out of the systems.

12 Mainframe History

Providing a path forward from the ESS line was the DS6800, DS8100, and DS8800 series, with one of those being
significantly better than the other. There were many hardware revisions of the DS8800 line (10 at the time of
writing this), and these consisted of POWER servers fitted with HBAs driving a rack of disk drives, and forking
those connections out over Fibre Channel, FICON, or (on older models) ESCON.

The DS6800 (called the “Baby Shark™) was a questionably-designed 3U disk array that could be attached to a
System Z. These were intended to be low-cost, and featured a PowerPC 750GX-based Linux-powered control com-
puter on-board. These units took direct Fibre Channel disks (despite their name, they did not have SFP connectors;
in fact, they were essentially SCSI320 drives that spoke the FC protocol directly instead of parallel SCSI).
However, these units were notorious for their failures, because the control CPU was not properly cooled. Some-
times, these would end badly, with the CPU becoming physically desoldered from its mount!

Tape Drives

While disks were certainly heavily used on the 360 line, tapes were where the real mass storage was at. Predating
disks, the history of mainframe tape drives is as old as computing itself! However, the tapes we are interested in are
half-inch plastic-base dense-oxide reels seen starting in the early 1950s. IBM pioneered the early 7-track format in
1952, with the model 726 tape drive (seen on the 704 mainframe.

These drives were called “vacuum-column” drives, since there were two long vertical columns the tape would
unroll into (with the head being in the middle). In other words, the tape would snake off the supply reel (the one
you removed when you took the tape out), down column 1, up the other side of column 1, past the tape head and
capstan mechanism, down column 2, up the other side of column 2, and finally onto the take-up reel. The “vacuum”
comes forum the trigger mechanism used to advance the tape: the most pertinent part to move was the capstan
(which moved the tape left and right on the tape head) and the movement of the tapes within the columns would
trigger the motors on both reels. When the tape level in the vacuum raises above a certain threshold (marked by a
hole in the back of the column), the vacuum drawn on the tape will be exposed to that hole. A vacuum switch (not
unlike the force-multiplying pneumatic mechanism seen on player pianos) triggers the motors, and the tape
advances either directions (depending on which of the two columns triggered).

Needless to say, the 726/727/728/729/7330 7-track tape drives were a big hit before the System/360. Once the 360
came out, we got the following tapes:

2400 Series: Though the 7-track format was good, IBM launched a newer 9-track format in 1965 with the S/360.
The new 2400 series included several submodels, and several submodels of controllers. | shall list the controllers
first:

e 2803 Model 1/2: can control and power up to 8 drives
e 2803 Model 3: can control and power up to 8 2401-8 drives
e 2804 Model 1/2: can control and power up to 8 drives, with one reading and one writing at the same time

e 2804 Model 3: can control and power up to 8 2401-8 drives, with simultaneous read/write support

The following 2400 drives were made:

Mainframe Peripherals 13

Table 1. IBM 2404 Drive Models

Model Tracks Modulation Density/Speed

1 9 NRZI 800, 30kbps

2 9 NRZI 800, 60kbps

3 9 NRZzI 800, 90kbps

4 9 PE 1600, 60kbps

5 9 PE 1600, 120kbps

6 9 PE 1600, 160kbps

1 7 NRZI 200/556/800, various
2 7 NRZI 200/556/800, various
3 7 NRZI 200/556/800, various
2401-8 7 NRZI 200/556/800, various

For the confused, NRZI is a non-return-to-zero-inverted encoding, and PE is a phase encoding (these are modulation
modes used to record and read the data on the tape as an analog signal).

There was an alternate controller available that offered much better performance with newer tape drive: the 2415.
There were 6 submodels:

e Model 1: NRZI, 1 control, 2 tapes

e Model 2: NRZI, 1 control, 4 tapes

e Model 3: NRZI, 1 control, 6 tapes

e Model 4: PE, 1 control, 2 tapes

¢ Model 5: PE, 1 control, 4 tapes

e Model 6: PE, 1 control, 6 tapes
2420 Model 7: Evolving from the earlier 2400 series, the 2420 (specifically the Model 7) introduced a very
clever feature: an automatically-loading tape mechanism! The operator placed a tape on the right spool (as was
customary, note that this is conventionally backwards to reel-to-reel audio tape recorders, reel-to-reel VTRs, and
such seen in the broadcasting world), pushed a button, and the machine would release a belt that spanned the
circumference of the tape reel to access the tape. To thread the tape, the machine would pull the tape off the reel
pneumatically and run it through the machine (of course, it would drop it down through the vacuum columns too).

This technology would live on in the successor, and was the envy of other tape drives from DEC and CDC that
used the same format!

3400 Series: When the System/370 was announced in 1970, it included a new tape drive line. The 3400 series
would be that successor: the 2420 autoloading scheme would be adopted for the 3400 series, and a new recording
mode would be added. The new drives ran at a whopping 1.25 megabit transfer rate! As before, there were a
variety of models:

e 3420: floor-standing vacuum-column units
e 3410: half-height-standing units

e 3422: follow-up to the 3420

e 3430: follow-up to the 3422

14 Mainframe History

Now, let us examine the model characteristics:

Table 2. IBM 3400 Drive Models
Model Modulation Density (bpi) Speed
3420-3 NRZI or PE 800 or 1600 75 ips
3420-5 NRZI or PE 800 or 1600 125 ips
3420-7 NRZI or PE 800 or 1600 200 ips
3420-4 GCR 6250 1.25 mbps
3420-6 PE or GCR 1600 or 6250 1.25 mbps
3420-8 PE or GCR 1600 or 6250 1.25 mbps
3410-1 PE 1600 20 kbps
3410-2 PE or NRZI 1600 or 800 40 kbps
3410-3 PE or NRZI 1600 or 800 80 kbps
3422 GCR 6250 1.25 mbps
3430-B01 GCR or PE 6250 or 1600 312 or 80
kilobytes/second

There were a variety of controllers produced for this line of tapes:
e 3803-1: 3420 Model 1/3/5
e 3803-2: 3420 Model 4/6/8
e 3411: 3410 (drives up to 4 drives)
e 3430-A01: 3430-B01 (drives up to 3 drives)

8809 and 9347: The 8809 was released in the mid-80s, and it was a 9-track manual-thread drive that did not
utilize a vacuum column. These units were very compact, and decently fast; alas, they were low-cost and only used
the 1600 bpi density mode. This drive was originally for the System/36, but could be connected to low-end models
of the 4300 series.

Somewhat of a technical miracle, the 9347 was an auto-loading, flat-mount, rack-mount, thin 9-track reel-to-reel
drive. You inserted the tape, and a complex loading mechanism pneumatically sucked the tape off the reel, ran it
through a predefined path, and spun it onto the take-up reel. These drives did not use vacuum columns, and instead
used a springloaded armature mechanism to alleviate tension. These were SCSl-interfacing, and were seen with the
9370 series. These were 1600 or 6250 bpi. Note: the AS400 line had the 9348, a very similar drive.

3480: While reel-to-reel drives were great, they were not particularly compact, especially in the 1980s when
everything else was beginning to shrink. IBM's answer to this was the 3480: a cartridge tape drive. By 1984 when
the 3480 launched, cartridge tapes were standard in all other tape formats: Stereo-8 (i.e. 8-track) tape players were
seen in cars, cassette tapes were all the rage, VHS/Betamax and U-Matic held video, so on and so forth.

The original 3480 tapes were half-inch square tapes, rolled entirely on a supply reel within the cartridge. The tape
formulation changed to a chromium dioxide powder (the same used for video tapes of that era and “high bias”
cassette tapes, marked CrO2). When the square cartridge was inserted into the drive, an armature loading mech-
anism would pull the tape out of the cartridge, past the head assembly (which was a new magnetoresistive design,
sharing technology with hard disk drives of the era, like the 3380 DASD), and onto the internal take-up reel.

Mainframe Peripherals 15

The original 3480 drive launched in 1984, and was attached to a System/370 with a parallel channel interface. The
drive had a transfer speed of 3 megabytes per second, recorded with a 38000 BPI density onto 36 tracks, and the
tape passed the heads at 78.6 inches per second. To avoid buffer-fill issues, a 512KB buffer was provided. The
controller box drove up to 4 drive units, which each contained 2 tape drives (so, a total of 8 drives). The cartridges
held 200 MB.

Successor drives to the 3480 series added ESCON support (though these were 3490Es, see below); other manufac-
turers (namely Fujitsu) made fully-compatible SCSI implementations of the 3480/3490E drives.

In 1986, a new model of 3480 came out: the 3480 IDRC, for Improved Data Recording Capacity. While this may
sound like an increase in density, it was actually an improvement in controller electronics: it was a data com-
pression scheme that allowed up to 400 megabytes to be stored on a tape assuming 2:1 compression.

3490E: The successor to the 3480 was the 3490E, launched in 1991. These drives almost universally had
autoloaders that fed cartridges into the drives from a stack, and connected via channel, SCSI, or ESCON. The
original model was the 3490-B40 with the 3490-A20 external controller box. Each tape held 800 MB.

There was also an IDRC capability for the 3490E; these upped cartridge capacity to 2400 MB (and these drives
were almost universally attached using ESCON).

3590: In 1995, the IBM Magstar product hit the market. This was a big upgrade over the 3490E drives, albeit
being much more expensive. There are many models of 3590 drive, and many controllers; the original controller,
the 3590-A50, was actually an RS/6000 that adapted SCSI 3590 drives to ESCON. Here are the models:

Table 3. IBM 3590 Drive Models

Model Tracks Length/Capacity Speed

3590-B11/B1A 128 320m/634m, 9 megabytes/second
10GB/20GGB

3590-E11/E1A 256 320m/634m, 14 megabytes/second
20GB/40GB

3590-H11/H1A 384 320m/634m, 14 megabytes/second
30GB/60GB

3592: The successor to the 3590 was the 3592, originally launched in 2003. These drives were attached via
ESCON or FICON (via a converter, like the 3590-A50), SCSI, SAS, or USB (depending on the generation), The
following drive models were produced:

16 Mainframe History

Table 4. IBM 3592 Drive Models

Model Year Capacity Speed
3592 (3592-J1A) 2003 300 GB 40 MB/s
TS1120 (3592-E05) 2005 700 MB 100 MB/s
TS1130 (3592-E05) 2008 1TB 160 MB/s
TS1140 (3592-E07) 2011 4TB 250 MB/s
TS1150 (3592-E08) 2014 10 TB 360 MB/s
TS1155 (3592-55F/55E) 2017 15TB 360 MB/s
TS1160 (3592-60F) 2018 20 TB 400 MB/s
TS1170 (3592-70F/70S) 2023 50 TB 400 MB/s

The F/E/S notation on some models listed indicates the attachment type:
e F: Fibre Channel
e E: Ethernet
e S:SAS

Line Printers

1403: The 1403 was the first printer introduced with the System/360 in its original run. This was a chain-type
printer, where the font would revolve around on a chain and be struck onto the paper (with an ink ribbon between
the font train and the paper) by hammers. On the 1403, the paper was pushed onto the font from behind, with the
ribbon remaining stationary on rollers. The 1403 was the line printer that was introduced for the 1401 computer; the
ones available with the System/360 were of several models:

e Model 2: 132 column, 600 lines per minute (upgradable to 1285 if letters were not required to be printed)

e Model 3: 132 columns, 1100 lines per minute (1400 if the character set was swapped out)

e Model 7: 120 columns, 600 lines per minute

e Model N1: 132 columns, 1100 lines per minute (1400 when swapped for the Universal Character Set); featured

a motor-driven lid cover that reached down to the floor to deaden the noise

The 1403 had a feature called “carriage control,” wherein a loop of punched tape (positioned to the right of the
print train mechanism) would have a series of pre-punched holes that described the layout of the “form,” or a map
of fixed locations on the paper. For example, the printer could be given a datastream of a few lines of text
seperated by form feed characters, and it would read the carriage control tape to know where to skip to when a
form feed character was seen. The position of the tape was mechanically interlocked to the paper train, so its
position always matched the paper's.

There was a similar model, the 1404, that had the ability to print onto punched cards. The mechanism was rather
clever, in the sense that it could interpret cards (i.e. read what's on the cards and print the data on the top).

2821: The control unit that the 1403 was attached to was the 2821, which also serviced other devices (which are
described in greater detail below). The following models were available:
e Model 1: one 2540 and one 1403

e Model 2: one 1403

Mainframe Peripherals 17

e Model 3: two or three 1403s

e Model 4: one 2540 and one 1404 (only for the System/360 model 25, 30, 40, and 50)
e Model 5: one 2540 and two or three 1403s

e Model 6: one 2540

The 2821 contained enough buffering logic to buffer one card or one line of text. A switch was present on the
cabinet that switched which of the two channel connectors on the back panel it would use to connect to the host
computer, so you could use it on two different computers. Strangely enough, the early models of the 2821 were not
implemented using the SLT integrated circuits of the rest of the System/360 line, but were instead implemented
with Standard Modular System cards (if you've seen the inside of some of the DEC PDP computers with their
flip-chip cards, IBM SMS is not far off). Newer revisions had some SLT logic, but was not made entirely of SLT.
Finally, in 1985, the product was withdrawn.

3211: The 3211 was the immediate successor to the 1403 series. Launched on June 30, 1970, the original 3211
could print at 2000 lines per minute (which was double the speed of the extant 1403 models). Unlike the 1403, the
3211 was a combination of 3 different distinct devices:

e The 3211 itself, the main printer; this was referred to as a “front printer” because the print hammers would
bang the ribbon into the paper, rather than banging the paper into the ribbon (like on the 1403). The 3211
boasted the following features:

— Interchangable type cartridges for a variety of fonts and configurations.

— 90 inch-per-second paper movement during form feeds.

— 132 columns, changeable to 150 with a replaced type cartridge

— A power stacker that processed the printed output

— A control panel that did not require the host computer to be operational for diagnostics and testing
— Programmable forms control buffers (FCBs) in lieu of carriage control tapes

e The 3216, the print cartridge; these held a total of 432 letters, of which were organized such that there were 4
letters per type element (so, the revolving print train had 108 pieces attached to it). These type slugs were
mounted onto the 108 carriers, such that they could be replaced. The 3216 included an oil-dispensing system.

e The 3811, the control unit that attached the printer to the channel of the mainframe.

3203: Another option that replaced the 1403 was the 3203, and was nearly the same mechanism. The carriage
control tape mechanism was removed, and connected to the mainframe in a rather strange way. Models 1 and 4 did
not require an external control unit, and instead attached directly to the System/370; the caveat was that the S/370
in question had to have an integrated 3203 controller. The Model 3 attached to a 3770 batch terminal, and the
Model 5 had a parallel channel adapter.

The printers printed at 1200 LPM except for the model 1, which printed at half that (600 LPM). The 3203 was
special for the time as it could actually print Braille, and this was done by putting a rubber strip over a special print
train font set that could print Braille dots without punching holes clean through the paper.

In the early 70s, IBM started to explore printer architectures that did not use a revolving print train of heavy print
elements, and instead used a flexible band. Other manufacturers at the time had drum printers (like the DEC line
printers, like the LP25, though most were made by Dataproducts), but IBM thought band printers would yield much
better print quality -- drum printers were fast, but the text often looked somewhat jerky and was not vertically-lined
usually.

3618: The first was the 3618, a so-called“Administrative Line Printer.” This printer was 80 columns (upgradable
to 132), but was not a 370 peripheral. Alas, it was announced in 1973.

18 Mainframe History

3262: The 3262 was the first band printer for 370 systems; there were a variety of models:

Table 5. IBM 3262 Models

Model Interface Speed Date

1 370 channel 650 Jan 30, 1979
2 8310 loop 650 Oct 2, 1979
3 3270 coax 650 Oct 31, 1979
5 370 channel 650 Nov 12, 1982
11 370 channel 325 Oct 2, 1979
12 8130 loop 325 Oct 2, 1979
13 3270 coax 325 Oct 31, 1979
Bl System/36 650 May 17, 1983
C1 System/36 650 May 17. 1983

5262: The successor was the 562, launched on October 2, 1984. These used a different print band from the
earlier 3262, and had a print speed of 650 LPM. Model 1 was twinax-attached, to a System/36.
4245: The high-speed option of the era was the 4245, launched in 1983. The following models were available:
e Model 1 (May 3, 1983), 2000 LPM
e Model 12/20 (April 16, 1985), 1200/2000 LPM; features included:
— Improved reliability over the Model 1
— 64 dB volume during operation

— Capable of printing MICR

Here is a convenient table of the models and their attachments:

Table 6. IBM 4245 Models

Model Attachment Speed Date

1 370 channel 2000 LPM May 3, 1983
12 370 channel 1200 LPM April 16, 1985
20 370 channel 2000 LPM April 16, 1985
D12 3270 coax 1200 LPM May 1, 1985
D20 3270 coax 2000 LPM May 1, 1985
T12 twinax 1200 LPM June 16, 1986
T20 twinax 2000 LPM June 16, 1986

4248: The 4248 was the successor, and was much faster -- it ran at 2000, 3000, or 3600 LPM! Launched on
February 7, 1984, the 132 column (or 168 columns, if you wish to print 2 documents side-by-side at the same time)
printer had a band that travelled at 45 miles per hour, with hammers that flew through the air for only 30 microsec-
onds. There were two models:

Mainframe Peripherals 19

e Model 1, the original described above

e Model 2, launched in February 1987, could print at 4000 LPM.
The 4248 had a program called Automatic Flight Time Compensation that would measure how long it took the
hammers to strike the page, and store a table of delays on the microcode diskette; it would then use that to calibrate
the page advancement speed to prevent drifty and unaligned text issues.

6262: The grand successor to all of these was the 6262, and the following models existed:

Table 7. IBM 6262 Models

Model Attachment Speed Date

Al2 parallel/serial 1200 Aug 28, 1990
D12 3270 coax 1200 Feb 2, 1988
P12 Dataproducts 1200 Oct 24, 1989
T12 twinax 1200 Feb 2, 1988
014 370 channel 1400 Feb 2, 1988
Al4 parallel/serial 1400 Aug 28, 1990
D14 3270 coax 1400 Feb 2, 1988
P14 Dataproducts 1400 Oct 24, 1989
022 370 channel 2200 Oct 24, 1989
A22 serial/parallel 2200 Aug 28, 1990
D22 3270 coax 2200 Oct 24, 1989
P22 Dataproducts 2200 Oct 24, 1989
T22 twinax 2200 Oct 24, 1989

Console Printer/Keyboards

1052: The first typewriter console for the System/360 was the 1052-7 (though other models were occasionally
used), which was derived from the 1050 Data Communications System. There were many subparts to the 1050
system (including 1052 typewriter terminals, 1053 printers, 1057 punches, 1056 readers, 1054/1055 paper tape
readers/punches, 1092/1093 programmed keyboards, 1058 printing punches, 1051 control units,and something called
the “IBM 2064 FBI Program™). These attached directly to the System/360 host computer, and were used as OS
system consoles.

3210/3215: The successors to the 1052 were the 3210/3215, launched in late 1970. There were 3 models:

e 3210 Model 1: used a Selectric printer with a Card Punch keyboard, capable of directly modifying data in the
host computer's storage; sat upon a table. Powered by the host processor power circuitry.

e 3210 Model 2: used the same keyboard/printer elements, was not capable of modifying data in the host comput-
er's storage; sat on a pedestal and was connected to the host processor via a long remote cable. Powered by an
internal power supply.

e 3215: used a 7x7 dot-matrix printhead with an Elastic-Diaphragm keyboard and printed at 80 characters per
second; capable of modifying the host computer's storage, was also powered by the host computer's power
circuitry.

20 Mainframe History

Card Readers/Punches

The System/360 was a batch machine, so the availability of card readers and punches was a requirement. There
were several available:

1442: An extant (at the time of the 360's release) card reader/punch machine seen on the 1130, 1800, and 1440
computers. The holes in the cards were illuminated by fiber optics. The punch famously did not print a textual
representation of the cards to the top! A dedicated card “interpreter” would be used to print those letters that corre-
spond to every column on the card. The following models were made:

e Model 1: reads at 80 cards/minute, punches at 50-270 cards/minute; comes with one stacker (with a second one
being optional).

e Model 2: reads at 400 cards/minute, punches at 91-360 cards/minute

¢ Model 6: reads 300 cards/minute, connects to a System/3 or 1130

e Model 7: reads 400 cards/minute, connects to a System/3 or 1130

e Model N1: reads 400 cards/minute, connects to a System/360 or System/370 by way of a parallel channel
e Model 3: read-only at 300 cards/minute, connects to a 1410 or 7010

e Model 4: read-only at 400 cards/minute, comes with two stackers instead of one, connects to a 1440

e Model 5: punch-only at 180 columns/second, connects to a 2922 Programmable Terminal or System/360 Model
20

e Model N2: punch-only at 180 columns/second, connects to a System/360 (not the Model 20) or System/370

2540: An alternative was the 2540, launched in 1965. There was only really one model, and these were very often
seen on System/360 installations. These attached to the host through a 2821 control unit (see the section above for
information on this, underneath the 1403 section in the Printers segment). These were much faster than the fastest
model of 1442; these read at 1000 cards/minute, and punched at 300 cards/minute.

There were two different devices that would show up to the host, the 2540R (reader) and 2540P (punch). The
reader had one input hopper and three output stackers (with the third one being sharable between the punch or
reader, but not at the same time). The punch, likewise, held three output hoppers (with the third one being shared).

The 2540 could both read and punch column binary mode, allowing for any data to be stored on cards.

3501/3521: Between the 2540 and its more successful successor, the 3501 reader and 3521 punch seemed to be
smaller models of the related 3505/3525 with only one stacker. Little information on this product exists; it did not
seem to be very popular.

3505/3525: The successor was the 3505/3525, launched in 1971 for the System/370. It read at 1200 cards/minute
(or, on the Model B2, 800 cards/minute) and could read cards that were optically marked (like, if you were to use a

pen to color in the spots on the card by hand). There were 3 submodels of the 3525: the P1, P2, and P3; these
punched at 100, 200, and 300 cards/minute respectively.

Networking Devices

The mainframe, being a natural system to experience a connection to a network, found itself amongst a sea of
networking peripherals. Here are some of those:

Mainframe Peripherals 21

Channel-to-Channel Adapters: While this may seem foreign to those familiar with PC hardware, this is not
uncommon in mainframes! A CTCA (as it is often abbreviated) lets two mainframes communicate directly with
each other using a channel path. This is roughly equivalent to connecting two PCs together with PCle ribbon cables,
albeit through a small box to facilitate the connection. There were two CTCAS made:

3088 CTCAs were the first, and this was originally a box that would be connected to a spare channel on a
System/360. These were available up until the end of parallel block channels, and was eventually replaced when
ESCON became the standard interface. Note that by the mid-80s, these devices were emulated; the channel con-
troller itself gained this ability directly.

ESCON and FICON CTCAs followed shortly thereafter; these were configured in the IOCS configuration file as
nothing more than a built-in device and were directly supported by the channel processor (there were no external
boxes to be seen with these).

8232 (LAN Channel Station): The 8232 LCS was the first attempt to create an Ethernet, Token Ring, PC
Network (an IBM product, an old version of Token Ring), and MAP (Manufacturing Automation Protocol, a
General Electric product that became IEEE 802.4 Token Bus) interface box for a System/370 in 1987. The device
in question was an IBM 7532 Industrial Computer, and it ran PC-DOS. There were actually two models of 8232,
with Model 1 consisting of one 7532 (and could therefore connect to up to 2 networks), and a Model 2 that was
just two 7532s. The LCS program, the so-called “IBM LAN Channel Support Program,” executed under the control
of PC-DOS, and the 7532(s) were mounted in a waist-high 19-inch rack (which had a cutout for the 7532(s)'s
power switch(es)). 4 disks were required during installation:

e PC-DOS, which would eventually be partially copied to the target disk

e The LCS Support Program, which would be customized and written to the target

e The Local Area Network Support Program, for configuring network boards

e The target disk, which would eventually be bootable and be left in the drive
The device was internally referred to as a “PCCA” (which | am guessing means PC Channel Adapter), and ran the
following programs in a modular fashion:

e 3 modules to allow the LCS to connect to 8 different kinds of mainframe and to the 2 different types of
networks:

- MTCMMAIN.EXE (the main task that executed the others)
— ETHTASK.TSK (for Ethernet support)
— TOKTASK.TSK (for Token Ring support)
e 3 modules to support the LCS:
— MONTASK.TSK (presumably to monitor the function of the device)
— PCCATSKL.TSK (to drive the host channel adapter)
— SCRNB8232.TSK (presumably to drive the display status screen)
e 1 program to configure everything:

- MTCMCONF.EXE

To actually configure the device, the user had to be aware of the following parameters:
e Model 1 or 2, since the Model 2 meant twice the work

e Which network cards were installed in slot 5 and 6 of the 7532, which could be Ethernet, Token Ring, or IBM
PC Network

22 Mainframe History

e The device address on the host that this would be attached as
e 32 or 64 control unit blocks for block transfers
e 1mbps or 3mbps channel speed
e The memory address, IRQ, and type of the LAN card(s)
Once the configuration and installation was done (which would be done by producing a DOS disk onto the target

disk, running the LAN Support Program to configure and load the network card drivers at boot, and then config-
uring and copying the LCS software), the box was rebooted, and everything would be ready for the host program.

One can tell that this box is based on earlier work done during the development of WISCNET for VM (search this
document for WISCNET to read about the developmental history of this box).
Some other manufacturers built machines that were compatible with the LCS. These included:

e The Cisco 7200 series ISR, with a parallel channel or ESCON interface board

e Bustech Netshuttle

e Polaris StarGate

e Interlink 3762
3172 (Nways Iterconnect Controller): In November 1990, IBM launched the successor to the earlier (and
much slower) LCS. This was 1990, and this was the era of ESCON -- the new 3172 came with an ESCON adapter,
but were often used with parallel channel adapters. In this era, LAN networks rarely went past 10 megabits (except

for FDDI, which was truly fast at 100 or sometimes 200 megabits), so a parallel channel adapter would suffice for
most customers.

The 3172 consisted of a rack-mount cabinet with a control panel (the so-called “operations panel”), a 486 CPU with
some RAM, a floppy drive and hard drive, a channel adapter, a LAN card, and a power supply. The following LAN
options were available, and you could have up to 4 cards (except for MAP boards, since those required 2 card
slots):

e FEthernet (10 megabit)
e Token Ring (16/4 megabit)
e FDDI (100 megabit)

e MAP 3.0 Broadband Mode (for the unaware, Manufacturing Automation Protocol is is an IEEE 802.4 10
megabit token-bus network)

e MAP 3.0 Carrierband Mode (same thing, but 5 megabits)
When the machine was ran in normal mode, OS/2 would load up and run similar programs to those found on the
old 8232 LCS. This device showed up to the host as a 3088 CTCA, just like the LCS; since this technically did

provide CTCA-style functions, IBM did provide a special mode that allowed up to 4 T1 lines to be bonded together
as a real CTCA. The 3172 supported the following LAN protocols:

e SNA; this was proper 802.3 encapsulated SNA and this would be ran under the control of VTAM

e TCP/IP; this was either 802.3 encapsulated or DIX (Ethernet 1l) encapsulated (the standard in modern times)
TCP/IP and this would be ran under the control of a TCP/IP stack

e OSI CLNS; this was the infamous TCP/IP competitor that was ran under the control of OSI Communication
Services (a currently lost program)

Mainframe Peripherals 23

WAN cards were also supported (these were IBM Microchannel WAC boards which held a V.24 or V.35 serial
interface), and this in-turn supported the following protocols:

A point-to-point SDLC line (this would talk to downstream 3274s and 3174s, or an emulation thereof)
A point-to-multipoint (i.e. multidropped) SDLC line
An X.25 line (which can carry SNA, TCP/IP, and presumably OSI traffic)

Frame Relay

In a LAN mode, there were two distinct operating modes that the 3172 could present to the host. These were:

Standard LCS mode; this was the standard but did not offer as good of performance as it could be

3172 Offload mode, wherein the TCP/IP stack ran on the 3172, called CLAW (Combined Link Access to
Workstation) mode

CLAW mode was rather interesting. It required the installation of additional software, and ran alongside the ICP
(the Interconnect Program, the program that ran the system).

2216 (Nways Multiaccess Controller): In 1999, IBM launched a true competitor to the Cisco Integrated
Service Router (in those days, the Cisco 7200 was looking like the be-all-and-end-all of multiprotocol routing).
Though the 2216 was primarily a router, it had mainframe support (then again, so did the Cisco 7200). The 2216
supported the following port interfaces:

Parallel channels
ESCON channels
Token-Ring
10/100 Ethernet
EIA-232/V.24
V.35

X.21

ISDN PRI (T1/J1)
ISDN PRI (E1)
ATM multimode
ATM singlemode
FDDI

HSSI

Pretty impressive, right? Well, it also supported the following network protocols:

IPv4, with IPsec

IPX

AppleTalk Phase Il

Banyan VINES

DECnet Phase IV

DECnet Phase V (sometimes called DECnet/OSlI)

SNA (APPN, DLSw, Frame Relay, and Enterprise Extender)

24 Mainframe History

¢ NetBIOS framing

Wow. Now, how was this useful for mainframes? Well, recall that it had channel and ESCON interfaces. These
could be attached to the host, where they would emulate a 3172 with downstream network nodes; this meant it
could directly support TN3270E by also emulating a 3174 as a downstream PU of the channel. Since these also
supported APPN and HPR, these were far advanced over an old 3174. To recap, these supported 2 operating modes:
IP and SNA (just like the 3172).

These routers had a rather fast CPU: a 233 MHz PowerPC 604; this was significantly faster than the 486 found in
the 3172s, and this provided much faster network throughput (until it was later replaced with the OSA).

Open Systems Adapter: In the late 90s, it was starting to become obvious that the extant method of doing
networking on mainframes (with a 3172 or 2216) was too high-latency. The result of the effort to drop that latency
was something called an Open Systems Adapter, seen on 9672 Gen 3 machines and newer. These operated in a
radically different mode called QDIO (Queued Direct 1/0), wherein the host CPU would drive the network card
with a memory-mapped-1/0 technique (rather than having something process a CCW program). The new OSA cards
supported a variety of networks:

e 10/100 Ethernet

e Gigabit Ethernet (OSA-Express)

e 10 Gigabit Ethernet (OSA-Express2)
e 155 ATM

e 4/16/100 Token Ring

Over the years, there were several hardware revisions of the OSA. Here is a brief summary of each model:

e The original OSA and OSA-2: introducing support for QDIO, these supported Fast Ethernet, 4/16/100 Token
Ring, FDDI (optional), and 155 ATM (optional). The IP QDIO mode (see below for something called OSD
mode) was a layer-3 solution only; you could not pass arbitrary Ethernet datagrams through the adapter (much
in the same way as the LCS). Up to 80 IP stacks could be ran with one channel path.

e OSA-Express: adding Gigabit Ethernet support as well as the Integrated Console Controller (see below), the
OSA-Express cards found on the z890 and newer also supported true layer-2 Ethernet. The number of IP stacks
supported was raised to 160.

e OSA-Express2: new for the z9, 10 Gigabit Ethernet support was added. You could now have up to 640 IP
stacks, allowing many (probably Linux) VM guests to share the same card and still have good performance.
There were several operating modes that the card could be put in:

e The OSE operating mode simulates a 3172 LAN Channel Station (which was once a modified Microchannel-
based PC running an OS/2 program called ICP that provided TCP/IP and SNA access for Ethernet, FDDI, and
Token Ring networks)

e OSD mode (which was added on the OSA-Express cards) is the standard operating mode in which a
Gigabit/Fast Ethernet or 155-megabit ATM controller is driven by the CPU using DMA (this mechanism is
called QDIO, i.e. Queued Direct 1/0).

e OSC mode (the Integrated Console Controller mentioned above)
e OSN mode, introduced with the OSA-Express2, was intended to provide an Ethernet interface for Communi-

cations Controller for Linux to use.

Something the z890 and z990 added was the Integrated Console Controller. In the "olden days", you had very few
options for providing a 3270 console to a mainframe. If you had a Multiprise 3000, great! If not, you would need
either a 3174 with coax terminals or an IBM 2074 console controller that would emulate a local terminal controller

Mainframe Peripherals 25

with TN3270 sockets. The ICC was a special operating mode of the OSA card, running in the OSC mode. This
would claim a LAN port for a TN3270 server, and it would simulate local 3270 terminals. One could then connect
a TN3270 emulator and get a console on the mainframe.

Non-Programmable Communications Controllers

In the early days of the System/360, there became some kind of need for terminals attached to mainframes. Before
the aforementioned 3270 series was made available, the dominant way to connect terminals to a S/360 was through
one of these. These devices did continue to exist into the 80s and 90s in an emulated capacity.

2701: The simplest of the 270x series was the 2701, announced in 1964 and delivered in 1967. This device was a
four-port “Data Adapter Unit” that provided either synchronous transmit-receive (STR) or bisync interfaces at up to
40.8 kbps. These officially supported the following devices listed in the product announcement, providing an inter-
esting view of terminal devices available in the mid-1960s:

¢ Devices that connected to the IBM 7710/7711:

— IBM 7710/7711, the original STR interface that connected IBM 1401 computers together (or to an S/360
via a 270x)

— IBM 7701/7702 Magnetic Tape Transmission Terminal
— IBM 1009 Data Transmission Unit
— IBM 1013 Card Transmission Terminal

e The IBM 7740 Communication Control System, the successor to the 7710/7711 (often seen alongside the IBM
1410 computer):

— IBM 7750 Programmed Transmission Control
e IBM 1030 Data Collection System:

— 1031 Input Station (card reader, badge reader, or manual input terminal; attaches to the remote computer
via the 1031A)

— 1032 Digital Time Unit (wrote timestamps onto data)
— 1033 Printer (shares the 1031A)
— 1034 Card Punch
— 1035 Badge Reader
e IBM 1050 Data Communication System (see the section on the 1052 for more information on this)
e IBM 1070 Process Communication System:
— 1071 Terminal Control Unit
— 1072 Terminal Multiplexer
— 1073 Latching Contact/Counter Terminal/Digital Pulse Converter
— 1074 Binary Display
— 1075 Decimal Display
— 1076 Manual Binary Input
— 1077 Manual Decimal Input
— 1078 Pulse Counter
e AT&T 83B2 Selcall Terminal

26 Mainframe History

e Western Union Plan 115A Outstation
e Common Carrier TWX Station

e |IBM 2740/2741

e IBM 2260/2848

Out of the devices listed here, only the last two (which weren't even originally included on the supported list in the
product announcement) were “timesharing” devices; the rest of these were devices driven by a computer in an era
before embedded controllers and microprocessors.

2702: If you needed more communications lines, one could get a 2702, released alongside the 2701. The trade-off
was that these 31 lines were STR-line-coding only, and ran at a lower speed than what was possible on the 2701.
This box supported the same devices as those listed above for the 2701, minus anything that communicated using
bisync (so, anything starting with a 7 in that model list).

2703: Announced in 1965 and made available shortly after the 2701/2702, the 2703 was the most popular of the
three models. Gone was the 4 or 31 line count limit, these had 176 (half-duplex) lines that ran in either STR mode,
bisync mode, or TTY mode (i.e. a normal async serial port). These attached to the host computer via a selector
channel (similar to the 2701/2702), and each device following the control unit address represented a configured
port: the control unit could be at address 300 and port 5 could be at address 304. While this box certainly had many
communications lines (and was perfect for timesharing), the line speed was limited to 2400 baud (increased to 4800
baud by 1970), one could connect an IBM 2712 to multiplex 14 extra devices onto one single high-speed line to the
2703 (the host computer would need to be made aware that a multiplexer was present on that port).

These devices were quite popular with TSS/360 and later CP/CMS and TSO users, and were electrically simple
(which allowed for quick cloning by various other manufacturers). Clones included the Memorex 1270, and three
devices made by NCR-Comten.

Since the 2703 was so popular, an emulator program was written for the 3705 that replaced it (see below).
AWS2703: Note: this device ONLY emulates ports on a 2703 running in TTY mode

A P/370 and P/390 device manager program that emulated the 2703 and 2540 punch was also available. This was
intended to connect to a modem attached to an asynchronous port, but OS/390 that existed during the period this
device manager was available famously could not actually utilize a 2703 for TSO! VM, however, could; this was a
documented use. Alas, one could use this to drive all manner of unusual devices from the P/390 operating system.

This emulator also emulated the 2540 punch, which was explicitly made available such that RSCS on VM would
control the port, and a user could punch a plotter output file onto a real serial port to drive a plotter using this
technique. While one could drive a plotter in an unattended fashion, the IBM manuals for the P/390 directly state
that this is a bad idea!

9370 ASCII Subsystem Controller: This device was a logically-similar device to the 2703, and somewhat
functioned like one. This was a card installed into a 9370 that provided up to 16 serial ports that ran in three
different modes:

¢ Native ASCII support mode
e ASCII/3270 conversion mode
e ASCII/3270 transparent mode

The following devices could be connected:

e 3101 Display Terminal

Mainframe Peripherals 27

e 3161/3163 Display Terminals
e IBM Personal Computer

e DEC VTxxx terminal

e ASCII printer

e ASCII plotter

4331/4341/9370 Telecommunications Subsystem: While the 37x5 series was considered a “programmable”
communications controller, a non-programmable analogue was the Telecommunications Adapter. This connected to:

e Up to 3 Multi-Protocol Two-Line adapters (providing synchronous serial)

e Up to 3 Asynchronous Four-line Communications adapters

These lines could be 64 kbps SDLC lines, or 19.2 kbps HDLC (X.25) lines. This device existed in an analogous

form on the IBM 43xx processors, and these devices are sometimes colloquially called an INTEGRATED COMMUNI-
CATIONS ADAPTER.

AWSICA: Note: this device is similar to the AWS2703 manager, except this device operates in BSC mode in lieu of
TTY mode.

Though 0S/390 VTAM could not use a 2703 in TTY mode for a TSO terminal, OS/390 JES2 (as well as VM/ESA
RSCS) could use an emulated (by this AWSICA adapter) 2703 BSC line for NJE communication. This adapter used
WAC ports (Wide Area Connector ISA card, the manager could also use the older Multiprotocol adapter cards) in
synchronous RS232 mode, X.21 mode, V.35 mode, or RS422 mode. Depending on the card type used, the user had
to load either AWSMPADD.SYS (for the Multiprotocol cards) or AWSWACDD.SYS (for WAC cards).

2260 Display System

The 2260 series was the logical precursor to the 3270 series, and was much more primitive, both from a design
standpoint and a functionality standpoint. Introduced in 1964, this was the first real successful
teleprocessing/timesharing terminal (that wasn't a specialized graphics device for CAD) seen on the S/360; through
the success of the S/360 and this line, this became the foundation for the first successful CRT video text terminal.

There were three models of 2260 display (listed as columns by rows):
e Model 1: 40x6
e Model 2: 40x12
e Model 3: 80x12

These devices included optional keyboards, which could be either a numeric-only keyboard or a full typewriter
keyboard -- this setup was referred to in the product announcement as a “man-to-machine communication” system
implementing a “visual 1/O concept.” When keys were pressed, the letters typed would be echoed on the CRT
screen via way of the terminal controller (described below). The display could show uppercase letters, numbers, and
25 special symbols (which included the space, newline, and other such characters).

The displays were rather odd in the sense that the image was drawn 90 degrees rotated to how a normal CRT
television would draw the image: the scanlines on the CRT screen started at the left-most edge, and then scanned
down (so, top-to-bottom scanning, incrementing rightward as the image draws). Remember, this was an era before
cheap semiconductor RAM chips existed, so the engineers found a very clever solution for storing the image.
Rather than using some kind of odd storage tube, the engineers found that they could actually fashion up an
acoustic delay line!

28 Mainframe History

2848 Controller: The screen image was stored in a delay line whose length and speed-of-sound characteristic
meant that one image could be stored in a big spiral-wound wire loop retained by rubber holders. A “transmitter”
would impart a vibration into the wire as a twist of sorts, and a “receiver” on the other side was a device that could
detect the torsion (this was a device built somewhat like a phonograph pickup). The image could be updated by
waiting for the timeslot on the ring (kept up by a counter) and then retransmitting the modified signal into the ring;
since the image will dampen out after one revolution around the acoustic ring, the image must constantly be re-
imparted into the ring by the transmitting transducer. Of course, this inevitably introduced some issues; if you
walked heavily by the controller (or installed the controller by an elevator, door, printer, or something else that
produced vibrations), the image would be scrambled and gradually fade away on all of the screens!

The 2848 could attach to the host computer by either a channel (operating locally), or through a communications set
(an old term for what we might call a modem today, either dial-type or leased-line) via a 2701 Data Adapter.

2265: This was a single-unit terminal that attached directly to either a channel or communications line, and per-
formed the functions of a single 2260 and 2848. This is analogous to, for instance, the future IBM 3275 controller-
terminal. This was announced alongside the 2770, and is discussed there.

NCP Communications Controllers

3705/3704: In 1972, IBM launched a programmable communications controller that would implement SNA net-
working and drive downstream 3274s/3174s. These came in the form of the 3705, which itself ran several pro-
grams:

e The EP (Emulation Program): this program emulated the earlier 2702/2703 "dumb™ communications controller
(which mainly provided ASCII, Bisync, or STR lines).

e The NCP (Network Control Program, no relation to ARPAnet NCP or DECnet NCP): this implemented the
Systems Network Architecture network protocol and attached to cluster controllers (i.e. 3274/3174) over syn-
chronous serial lines or T1 circuits.

e The PEP (Partitioned Emulation Program): provides a subset of the EP and a subset of the NCP, used when
both functions were needed.

The 3705 drove up to 352 communications lines, and the smaller 3704 (introduced in 1973) supported up to 32
communication lines.

3710: This was the successor to the 3705, and was introduced in 1984. This was a much smaller network con-
troller that was about as large as three 8-inch floppy drives set vertically, and was analogous to a shrunk 3705.
These used a 3101 ASCII terminal for the control terminal, unlike an operator panel seen on the earlier 3705s.
These had RS-232, V.35, and X.21 communications adapters, and introduced the ability to connect to another 3725
(see below) through an X.25 network.

3725: In 1983, IBM decided to overhaul the 3705 architecture by reimplementing the formerly-hardware line
processors with ones using microcoded processors. This was a hefty design change, and there were several models
in the series:

e 3725: The original communications controller in the series

e 3720: A shrunk version of the 3725 that replaced the 3710

e 3726: An expansion box for the 3725 (to add more line cards)
The 3725 was configured with 512 KB to 2 MB of main storage (installed in 256 KB increments), a single type of
channel adapter (which could talk to up to 6 host processors, or 4 multiprocessor host processors), a single type of

communications scanner card (which implemented the SDLC, BSC, and start/stop protocols), five different types of
line interface cards (for a total of 256 full-duplex or half-duplex communications lines), and a terminal for the

Mainframe Peripherals 29

operators console (a 3727). Each frame added more and more line cards, with 96 with one frame or 256 with two
frames (which added 160). The lines ran at a maximum of 256 kbps.

3745: The final NCPs were introduced from 1988 to 1992. The 3745, introduced in 1988, was directly equipped
with T1 line cards to match the era. These were large machines, spanning three cabinets; the 3476 Nways Con-
troller was originally an expansion cabinet for the 3745 that added Token Ring and ESCON connections. In 1995,
the 3746-950 was launched, shrinking and combining the featureset into the final NCP made.

The following models were made:

e 130

e 150

* 160

e 170

e 210

e 310

e 410

e 610

Communications Controller for Linux: CCL is a z/Linux (and Linux/390) based emulator for the 3745,
capable of running unmodified 3745/3746 NCP programs. These would be able to communicate with the host via

channel-to-channel adapters (usually under VM), or talk on a network using a special operating mode of the OSA
cards (OSN mode).

3270 Display Controllers

The 3270 Display System was a relatively advanced (for its time, arguably still even today) terminal system that
replaced the earlier 2260 system in 1971. These functioned as parts of a distributed network, attempting to alleviate
as much of the host CPU load as possible during terminal control tasks. We will discuss the controllers first, then
the terminals next.

The 3270 terminals (see below for more information on them) attached to a communications controller through a
coax connection; many sites used "baluns™ (just like in radioelectronics) to connect 3270 terminals to their associ-
ated control units over phone lines (in lieu of "expensive" 93 ohm RG-62 coax cables). The controllers included:

3272: The first channel-attached 3270 controller for S/360 and S/370 machines was the so-called “3272 Local
Controller”; this was a nondescript gray box with a big wire-wrapped backplane inside it. The circuitry was some-
what similar to the 3271 -- it was almost entirely comprised of 7400-series logic ICs. The terminals attached to
coax jacks at the back, and the 3272 connected to the host mainframe with a bus-and-tag cable.

3271: The remote version of the 3272 is the 3271, and it had a V.24 serial port on the back that either connected
it directly (via synchronous serial SDLC) to a 2703 or 3705 communications controller, or could be attached to a
synchronous modem (the 3863/3864/3865/3868/3872/5811/5865/5866/5868). These would be intended for attach-
ment at perhaps a remote office, and the modem could be a normal dial-type modem or a leased-line modem. Alas,
one could also directly connect it to a 2703/3705 if desired.

3274: The second "local non-SNA" terminal controller (that could also do "local SNA" and just plain "SNA™) was

the 3274, and it replaced the earlier 3271 and 3272. There were several models of 3274, and they were equipped
with 8/12/16/32 ports -- these came in two types:

30 Mainframe History

e Category A, the newer (despite it coming first) coax interface with a slightly different coax protocol introduced
with the 3274. These worked with new terminals introduced in the 3274 product generation, like the 3278 and
3279. The first 8 ports were always category A; category A ports were seen in the first cluster on a multi-
cluster (i.e. two boards of BNC ports) 3274.

e Category B, the older coax interface, intended to hook up to devices like the 3277 terminal and 3284 printer.
These were always found in a cluster that came after the first one.
Conversely, there were 3 different types of 3274 for each model. These were:

e A-unit, a local (i.e. parallel channel) control unit that provided "local SNA" terminals; this showed up to the
host computer as one device. VTAM would have to drive this device as a proper SNA control unit, and termi-
nals would be addressed as proper SNA devices. The 3274-xA was intended to replace the 3271.

e B-unit, also a local channel control unit that provided "local non-SNA" terminals. This provided many devices
(32 if you had 32 ports) to the host, and these devices were either defined as either displays or printers. Since
these were local devices, you would, instance, find yourself logged into VM with a 3 or 4 digit device address
for the terminal, as opposed to an LU name for a 3274-xA. The 3274-xB was intended to replace the 3272.

e C-unit, a remote SDLC/BSC or local SNA control unit.

¢ D-unit, the same as the 3274-xB except these could not communicate with 30xx processor.
The 3274s loaded from an 8-inch floppy disk, and held a rather advanced integrated computer. By the end of its
life, it supported quite an interesting array of software features:

e 3270 Extended Data Stream and highlighting

Programmed Symbol Sets, for custom fonts

A V.24 synchronous serial interface (works up to 14.4kbps)

A V.35 synchronous serial interface (works up to 56kbps)

SNA or X.25 network attachment on the synchronous serial port

DownStream Load for the 3290 and 3179G graphics terminals

Distributed Function Terminal (DFT) mode

Control Unit Terminal (CUT) mode

Support for the 9901 and 3299 multiplexers

Entry Assist

Dual Logic, allowing 2 sessions to be used on a CUT terminal

There were a number of models, and, while I will not give the exact details on every one of these, I will provide a
table of the models:

Mainframe Peripherals 31

Table 8. IBM 3274 Models

303x, 3081, 308x, 3090,
4300, 8100, or 9370

Model Attachment Supported Processors Max Ports
3274-A01 local SNA S/370, 30xx, or 4300 32
3274-B01 local non-SNA S/360, S/370, 30xx, or 32
4300
3274-C01 local SNA or remote S/360, S/370, 30xx, or 32
SNA 4300
3274-D01 local non-SNA S/370 or 4300 32
3274-21A local SNA S/370, 30xx, or 4300 32
3274-21B local non-SNA S/360, S/370, 30xx, or 32
4300
3274-21C remote SNA (ASCII or S/3, S/360, S/370, 30xX, 32
EBCDIC) 303x, 3081, 308x, 3090,
4300, 8100, or 9370
3274-21D local non-SNA S/370 or 4300 32
3274-31A local SNA S/370, 30xx, or 4300 32
3274-31C remote SNA (ASCII or S/3, S/360, S/370, 30xx, 32
EBCDIC) 303x, 3081, 308x, 3090,
4300, 8100, or 9370
3274-31D local non-SNA S/370 or 4300 32
3274-41A local SNA S/370, 30xx, or 4300 32
3274-41C remote SNA (ASCII or S/3, S/360, S/370, 30xX, 32
EBCDIC) 303x, 3081, 308x, 3090,
4300, 8100, or 9370
3274-41D local non-SNA S/370 or 4300 32
3274-51C remote SNA S/3, S/360, S/370, 30xx, 12
303x, 3081, 308x, 3090,
4300, 8100, or 9370
3274-61C remote SNA S/3, S/360, S/370, 30xX, 16

3174: The 3174 (introduced in 1986) was a vastly-improved and simplified iteration of the 3274. Gone was the
8-inch floppy, the new 3174 booted off of 5.25" floppies. Likewise, the design was adapted to be more generic: the
largest floor-standing models had 10 slots, which could be populated with either channel adapters or serial cards
(depending on whether or not the unit was a local or remote configuration), or coax adapters. The local models

were bimodal -- that is, they could be either local SNA or local non-SNA.

Over the course of the lifetime of the 3174, several releases of the "Configuration Support" firmware were made

available:

Configuration Support A, the first firmware released alongside the 3174, supported everything that existed when it

was released (so, synchronous serial, parallel channels, Token Ring). Software features included:

32 Mainframe History

Country Extended Code Page (for foreign languages)
Multiple Logical Terminals (terminal multiplexing)
Response Time Monitor (which incremented every second during an X SYSTEM wait period)

Intelligent Printer Data Stream

Configuration Support S, which followed A, allowed either a local or remote controller to function as a Token
Ring DSPU Gateway system, wherein up to 80 downstream physical terminal units could be attached over a
network.

Configuration Support B, which expanded the TR DSPU to 250 downstream PUs and introduced a feature that
alleviated VTAM's need to perform polled 1/0 on the channel: Group Polling.

Configuration Support C, the final version(s), which added neat features like:

ISDN support (answering; PCs would usually originate the call)
APPN SNA support

3174 Peer Communication (allowed PCs attached via coax to access a Token Ring LAN controlled by the
controller)

5250 terminal emulation
TCP/IP TN3270 and normal Telnet support
Ethernet support

The following models existed:

Mainframe Peripherals 33

Table 9. IBM 3174 Models

Model (Year) Attachment Coax (ASCII) Ports Form Factor
3174-01L (1986) Channel 4/32, 0124 Floor
3174-01R (1986) V.21/TR 4/32, 0/24 Floor
3174-02R (1986) X.21 4132, 0/24 Floor
3174-03R (1986) TR 4/32, 0/24 Floor
3174-51R (1986) Synch Serial/TR 9/16, 0/0 Desktop
3174-52R (1986) X.21 9/16, 0/0 Desktop
3174-53R (1986) TR 9/16, 0/0 Desktop
3174-81R (1986) Synch Serial 4/8, 0/0 Desktop
3174-82R (1986) X.21 4/8, 0/0 Desktop
3174-11L (1989) Channel 4/64, 0/24 Floor
3174-11R (1989) Synch Serial 4/64, 0/24 Floor
3174-12R (1989) X.21 4164, 0/24 Floor
3174-13R (1989) TR/Ethernet 4/64, 0124 Floor
3174-61R (1989) Serial/TR/Ethernet 9/16, 8/8 Desktop
3174-62R (1989) X.21 9/16, 8/8 Desktop
3174-63R (1989) TR 9/16, 8/8 Desktop
3174-91R (1989) Synch Serial 4/8, 0/0 Desktop
3174-92R (1989) X.21 4/86, 0/0 Desktop
3174-21R (1991) Serial/TR/Ethernet 4/64, 0/0 Rack
3174-21L (1991) Channel 4/64, 0/0 Rack
3174-22R (1991) ESCON/TR/Ethernet 4/64, 0/0 Rack
3174-22R (1991) X.21 4/64, 0/0 Rack
3174-23R (1991) TR 4/64, 0/0 Rack
3174-12L (1991) ESCON/TR/Ethernet 4/64, 0/24 Floor
3174-90R (1991) TR 1/1, 0/0 Desktop
3174-91R (1991) Synch Serial 4/8, 0/0 Desktop
3174-92R (1991) X.21 4/8, 0/0 Desktop
3174-14R (1993) Ethernet 4164, 0124 Floor
3174-24R (1993) Ethernet 4/64, 0/24 Rack
3174-64R (1993) Ethernet 4/16, 0/8 Desktop

34 Mainframe History

Combination Controller/Displays: There were two of these made, and these combined the functions of a
controller and a terminal in some fashion:

e 3275, a combination remote SNA controller and terminal, sometimes used for a system console with one extra
optional printer attached(1971)

e 3276, a combination remote SNA controller and a terminal, attached directly to a 2703/3705 or to a synchro-
nous serial modem (just like the 3275) but could attach up to 6 terminals or printers (by way of modules that
could be installed in the 3276 controller box that sat underneath the terminal)

3299 Multiplexer: This external box worked with (originally) a 3274 equipped with the 9901 Multiplexer
Feature. This box allowed a single coax port on the 3274 to provide 8 coax ports to downstream devices, providing
a great increase in density.

3270 Display Terminals

Replacing the earlier 2260 (which we will discuss next), the 3270 is a block-oriented terminal (rather different from
the VT100-clone terminals you're probably used to emulating with programs like xterm) and printer system. While
real 3270 terminals are long gone and the protocol lives on as Telnet 3270 (or, more commonly, TN3270), it is
interesting to study where all of those classic mainframe green screens came from.

Being introduced in 1971 (as mentioned in the Controllers section), the 3270 line was intended to provide the
highest number of terminals on the mainframe possible. That meant the controllers had to do a lot of work, but so
did the terminals! The effect of the extremely efficient design was that a single mainframe with 16 MB of main
storage could supposedly support 17,500 terminals on CICS with this product line.

As partially discussed earlier, the 3270 terminals interface with a host controller in one of two methods:

e Coax connection with a 93 ohm RG-62 cable fitted with BNC connectors; one terminal per cable (alternatively,
with a 150 ohm balun that converts the coax BNC plugs to something that can take a phone line) -- this
interface can transfer 2.3587 megabits per second.

e Direct attachment to a 37x5 or 4331 communications controller's serial port (this is the case for the 3275 and
3276).

There were two operating modes for these terminals:

e Control Unit Terminal (CUT) mode, wherein the terminal data stream would be consumed by the controller
itself; the controller would then instruct the terminal to move the cursor to a position on screen, write a char-
acter with attributes, read keys from the keyboard via polling, so on and so forth. The characters transferring
downstream to or from the terminal are not in the EBCDIC character set, but instead a special “3270 data
stream.”

e Distributed Function Terminal (DFT) mode, wherein most of the data stream is forwarded off to the terminal
-- this, naturally, requires a more sophisticated terminal, but means the display will interpret the 3270 data
stream protocol itself. This allowed for extended attributes, more colors, and, most interestingly, full vector
graphics and custom programmed-symbol fonts!

Some terminals were CUT terminals, and others were DFT terminals. Alas, there were many models of 3270 made.
Here are some of them in quick succession:

3277: Essentially the first 3270 terminal, the 3277 was a rather interesting product! Not only could you get one of
three kinds of keyboards (a basic keyboard which could only type in uppercase, a text keyboard that could type in
mixed-case or APL, and special keyboard which only really had a numeric keypad), but you could also get a
selector pen (a type of light pen that allowed for point-and-click behavior in some applications), or even ASCII
character set function. The other models in the series were:

Mainframe Peripherals 35

e Model 1: 40x12

e Model 2: 80x24 (a successful product)

e Model GA (with a RS232 serial port intended to drive either a Tektronix 4013 or 4015 graphics display)
3278: Improving on the 3277 in 1979, the 3278 had a much-improved keyboard and new graphics/datastream
features. The 5 models were as follows:

e Model 1: 80x12

e Model 2: 80x24

e Model 2A: 80x24, but with the bottom 4 lines reserved (these were special console terminals)

e Model 3: 80x32 or 80x24 (changable with a switch)

e Model 4: 80x43 or 80x24

e Model 5: 132x27 or 80x24
Among other design improvements, the 3278 also introduced an extended highlighting system. Fields could blink,
be inverted, be underscored, or have a different character set. There was also support for programmed symbols, a
means of loading custom fonts (but could also be used to display monochrome bitmaps with some cleverness).
There was an interesting design flaw that, during a programmed symbol set load, some models of 3278 or 3279
would have green streaks flash across the display... the so-called “green lightning.” This looked like a fuzz of green
lines, and occasional blue lines would flash in the status area.
3279: The third generation of 3270s came in 1979. These featured color, and the following models were made:

e Model 2A: 80x24, base color

e Model 2B: 80x24, extended color

e Model 2C: 80x24, base color, 4 lines reserved (this was a console terminal)

e Model 3A: 80x32, base color

e Model 3B: 80x32, extended color

e Model S3G: 80x32 extended color, with programmed symbol set capability

Base Color meant there were 4 colors. This resulted in a color pattern like this:

Table 10. Base Colors

Protection I ntensity Color
Unprotected Normal Green
Unprotected Intensified Red
Protected Normal Blue
Protected Intensified White

Extended Color allows for a expanded data stream, and the following colors were possible:
e Neutral/white
* Red

e Green

36 Mainframe History

e Blue

e Green

e Pink

* Yellow

e Turquoise

In order to allow for the graphics features to be sufficiently utilized, IBM wrote a program package called Graph-

ical Data Display Manager (or, more commonly, GDDM) at the Hursley Development Laboratory (outside of
Winchester, England; the machines it was developed on all bore names starting with WINVM).

3290: The 3290 is a rather interesting terminal, or, as per its actual name, an Information Panel! Launched on
March 8, 1983, the 3290 used a beautiful orange gas plasma display and could run in one of two modes:

e Four distinct 3278 Model 2 terminals

e A single terminal, with a massive 162x62 size

You could also use programmed symbol graphics on it, but the only caveat was that the controller it was connected
to had to support the Downstream Load feature (since the 3290 had to load its microcode from the controller).

3178/3179: In the era of simplified electronics design, IBM launched the 3178 in April 1983. This consisted of a
box that sat underneath a monitor, and a PC-derived keyboard. These were mildly successful, but were replaced a
year later.

On March 20, 1984, IBM announced the replacement to the 3279: the 3179. These were lower-cost and had simpler
electronics. There were 3 models:

e 3279 Model 1: 80x24, no graphics

e 3279 Model G1: 80x24, graphics

e 3279 Model G2: 80x43, graphics
The graphics support on the 3179G models was quite desirable, as it had what IBM referred to as All Points
Addressable (APA) graphics -- that is, you could deposit pixels on the display anywhere with a resolution of

720x384. This terminal also supported vector graphics, and the vector graphic rasterization was performed on the
terminal itself. These were terminals that required a Downstream Load from the controller.

3180: Launched on March 20, 1984, the IBM 3180 is one of the most interesting and complex terminals. There
were several submodels:

e Model 2 and Model 2+: 80x24, basic or extended mode

e Model 3 and Model 3+: 80x32, basic or extended mode

e Model 4 and Model 4+: 80x43, basic or extended mode

e Model 5 and Model 5+: 132x27, basic or extended mode
Basic mode provided a simple terminal, and extended mode allowed for the screen to be resized, rotated, or a small

partition could be created by the application. These were also intended to connect to a System/36 (the precursor to
the AS/400 for those not familiar with this platform), and were monochrome green displays.

3191: Introduced in June 1986, the 3191 was a monochrome green or amber terminal that could connect to a
System/370 or an 8100. There were two model groups:

* Model A/B: 80x24

Mainframe Peripherals 37

e Model D/E/L: 80x24 or 80x43
3192: Essentially a (sometimes) color version of the 3191, the 3192 launched in January 1987. As usual, there
were several models:

e Model C: 80x24 or 80x32

e Model D: Monochrome green, 80x24/80x32/80x44/132x27

e Model F: 80x24/80x32/80x44/132x27

e Model G: 80x24 or 80x32, graphics support

e Model L: Monochrome green, 80x24/80x32/80x44/132x27, but with a light pen

e Model W: Monochrome white, 80x24/80x32/80x44/132x27

The 3192G graphics model supported 16 colors and could also attach to an IBM Proprinter for hardcopy output.

3193: 1In 1983, IBM launched something that could be seen as a bit of a graphics workstation. Intended to connect
to a scanner and a printer, the 3193 was actually a high-resolution portrait-orientation monochrome display. A US
Letter or A4 document could be displayed on the CRT, and the attached scanner would transmit a compressed
datastream to the terminal. There were 2 submodels, with Model 1 having a 122-key keyboard, and Model 2 having
a 102-key Enhanced PC keyboard.

The screen was a whopping 880x1152 pixels, with a line resolution of 80x48. Two logical terminals could be used,
and the image data stream was supported (which GDDM supported).

3194: More of a “smart workstation,” the 3194 was a desktop-computer look-alike that had a 1.44MB PC floppy
drive (where data could be transferred to and from the disk by using the IND$FILE transfer program on the host).
There were 3 models:

e Model C: 80x24 or 80x32, color (12-inch monitor)
e Model D: 80x24/80x32/80x44/132x27, monochrome (15-inch monitor)
e Model H: 80x24/80x32/80x44/132x27, color (14-inch monitor)

3104: A variant of the 3178, the 3104 was intended to only connect to an 8100 through an R-loop. Little seems to
be known about this product.

3472: The IBM InfowWindow was introduced in 1989, and was the final dedicated 3270 terminal before PCs
running emulators took over. These terminals supported graphics fully, and could run 5 concurrent sessions! There
were a variety of devices that could be attached without any difficulty:

* Mouse

e Color plotter

e Graphics tablet

e Barcode scanner
Printers: One of the other features provided by the 3270 line was support for printers. There were several
printers made over the years:

e 3284 matrix printer

e 3286 matrix printer

e 3287 matrix printer (there was a color model available)

38 Mainframe History

e 3288 line printer
e 3268-1 (an R-loop printer for an 8100)

e 4224 matrix printer

RJE Terminals

In the batch era (which IBM certainly prolonged), having cheap remote batch terminals with a card reader/card
punch/line printer was a cheap way to expand the geographical footprint of a computer. These came from IBM in
the form of various Remote Job Entry workstations, which attached to the host computer through a variety of
communications processors (described below). These connections were made in the form of bisync connections or
STR (Synchronous Transmit/Receive, an early form of synchronous serial from IBM) connections, either directly to
the computer or through a dial modem, leased-line modem, packet-switched X.25 network, or some other such
similar connection.

RJE was supported by most batch spooling programs on the System/360 line; this included HASP (JES2, OS/360),
ASP (JES3, 0S/360), RES (JES1, OS/VS1), POWER (VSE), RSCS and (VM). Some places took RJE and ran it
over other networks, like UCLA's NETRJS that ran on the pre-TCP/IP ARPANET (and later on the TCP/IP
ARPANET). RJE was also ran over SNA. The RJE terminals themselves, much in the same way as the 3270
terminals, were often emulated by minicomputers/microcomputers.

In the pre-emulation era, IBM made the following batch terminals:
2780 Data Transmission Terminal: This was released in 1967, and was itself comprised of four major sub-

units:

e A bisync controller box, these would provide the minimum amount of electronics necessary to talk to the host
computer

e A card reader and punch, derived from the IBM 1442 described earlier; this particular iteration read 400 cards
per minute and punched 355 cards per minute

e A line printer, derived from the IBM 1403, that printed 240 lines per minute (though the chain could be short-
ened to a limited character set to increase print speed to 300 lines per minute)

e A line transmit/receive buffering box that buffered up to one print line or one read/punched card

There were in turn four different models made:

e Model 1: capable of reading cards and printing output from the host computer

e Model 2: capable of reading cards, punching cards, and printing output from the host

e Model 3: capable of only printing data from the host

e Model 4: capable of reading and punching cards, but not print
2770 Data Communication System: Though not strictly a successor to the 2780 and more of an alternative,
the 2770 was announced in 1969 and supposedly surpassed every other IBM terminal made to that point in input

and output capabilities. The 2770 came with an included CRT terminal and keyboard, and could drive several
downstream devices:

e 2265 Display Station (see the previous section on the 2260 for more on this)
e 2502 Card Reader (model Al or A2)

e 5496 Data Recorder (punched the 96-column cards for the System/3)

e 1053 Printer (model 1)

Mainframe Peripherals 39

3780: The successor to the 2780 was the 3780, launched in 1972. Unlike the predecessor, there was a single
model of this (but one could get an optional card punch with it). The built-in card reader read cards at 600
cards/minute, the punch (the 3781) punched 91 cards/minute maximum, and the printer printed 300 lines/minute

1017 Paper Tape Reader (5/6/7/8 column, 120 chars/second)
1018 Paper Tape Punch

545 Card Punch (model 3, non-printing; model 4, printing)
50 Magnetic Data Inscriber

1255 Magnetic Character Reader (model 1/2/3)

minimum.

The 3780 was extensively emulated by various other computers, like the DEC DNG60 in the late 70s. Software

implementations were also relatively common.

3770: This was the ultimate batch terminal, released in 1974. Succeeding the 3780, these supported a variety of

communications protocols:

This was a series of desk-console terminals that existed in the following models:

SDLC

BSC

Multileaved BSC
SNA

3771, with a wire matrix printer:

Model 1: 40 cps printer

Model 2: 80 cps printer

Model 3: 120 cps printer
— All models could feature an optional reader and punch
3773, with a diskette and wire matrix printer:
— Model 1: 40 cps printer
— Model 2: 80 cps printer
— Model 3: 120 cps printer
3774, with a wire matrix printer (and optionally a belt printer):
— Model 1: 80 cps printer
— Model 2: 12 cps printer
3775, with a belt printer (and optionally a diskette):
— Model 1: 120 Ipm printer
— Model P1: included a display terminal
3776, with a belt printer
— Model 1: 300 Ipm printer
— Model 2: 400 Ipm printer

40 Mainframe History

e 3777, with a train printer

Model 1: 1000 Ipm printer
Model 2: adds a card punch
Model 3: adds a tape drive

Model 4: replaces the printer with a slower 3262

Mainframe Peripherals

41

Early OSes - BPS/360, BOS/360, and TOS/360

BPS/360

In the early days of computing, you had to write nearly all of your software. You might have a vendor-provided
compiler for a high-level language, an assembler, or nothing at all! When IBM launched the 360, everyone had
decided that computers being sold in that era should come with some kind of operating system. IBM filled that void
with, initially, two OS offerings: for the smaller machines (that is, the Model 30 and machines configured without
much main storage), BPS/360; for the larger systems, the customer could select BOS/360 or later systems like
TOS/360 and DOS/360.

BPS/360 (Basic Programming Support) was a combination of two OS releases, both launching with the S/360 in
mid-1965:

e A punched-card edition, requiring no permanent storage devices

e A tape edition, loading a small resident supervisor and using tapes
The card version of BPS/360 was essentially many decks of standalone utility programs. Disks and tapes could be
initialized from certain decks, an assembler could be loaded from one deck, and high-level languages were available
too: RPG (Report Program Generator) and a subset of FORTRAN IV were on offer -- the tape version of the
FORTRAN compiler required 16 KB of storage, and the tape version of the assembler likewise had more features
(setting up the trend of the card versions of the utilities being "worse" than the tape versions). Alas, BPS/360 was a
bit of a failure. By the time BPS/360 was released, disks were starting to become rather cheap -- this is definitely in

direct contrast to the computing landscape of the IBM 1401 and IBM 7090 precursor errors, were disks were seen
as a rare luxury.

BOS/360

Seeing the need for a real proper OS, IBM launched BOS/360 alongside the System/360. There were initially three
versions of BOS/360, which would later end up being renamed:

e BOS 8K for disk systems --> BOS

e BOS 16K for disk systems --> DOS

e BOS 16K for tape systems --> TOS
At the time of writing this, there exists a copy of the third system on Bitsavers; it is labelled BOS, but is actually
an early version of TOS. The renaming of the three products occurred in May 1966, and manuals from the time
period can be somewhat obtuse if the reader does not have a keen eye for the tape size being used. Alas, the 16K
disk system would go on to live a long and prosperous life (and still remains alive today). Please do note that |
(your author, Evie) am not 100% sure that this information is correct -- there appears to be conflicting information
online and in manuals.
BOS/360 provided the following facilities:

e A supervisor, a punched-card job loader, and an IPL loader (necessary to control and operate the system)

e A linkage editor, a librarian, and a system generation utility named the Load System Program (all necessary for
maintaining the system)

e An assembler, an RPG compiler, and FORTRAN, COBOL, and PL/I compilers (for application development)

e Sort/merge, a debugging aid called Autotest, various file utility programs, and a remote job entry (RJE) client

42 Mainframe History

Alas, BOS/360 proper (i.e. the 8K disk system that would run off a 2311 DASD disk drive), is merely a simplistic
version of the later DOS/360 system that would be released shortly thereafter. For users without disk drives and
only tape drives (provided they had enough storage), TOS/360 was a choice. Both DOS/360 and TOS/360 shared
many similarities; there were at least 26 releases of TOS before its discontinuation, but DOS continued for at least
26 releases. Note: | am not entirely sure on the accuracy of these version numbers -- | kept running into conflicting
information in the composition of this work.

Early OSes - BPS/360, BOS/360, and TOS/360 43

DOS/360, VSE, and z/VSE

DOS/360 and TOS/360

DOS/360 and TOS/360 (even though TOS/360 died off) featured a rather odd memory model -- since the BOS
derivatives were considered to be a "stop-gap OS" until OS/360 came out (which we will discuss next), the archi-
tecture of the system can best be described as "antiquated." Rather than having a memory-management model
reminiscent of other timesharing OSes like VMS where a program is free to grow its virtual address space,
DOS/360 and TOS/360 presented a variety of fixed memory partitions within the non-virtual address space.
DOS/360 did not have a relocating loader, so all of the address offsets within programs had to be made absolute
when the program was linked -- this meant that a program that was link-edited (the "link editor" being the old term
for what we now call just a "linker") for partition 0 would not run in partition 3. Since there was no virtual
memory, a malfunctioning program in one partition could spell the doom of another partition; the multiple partitions
were merely for timeslicing at the scheduler level.

Strangely enough, early versions of DOS/360 did not have a batch spooler; a program would have to be started by
hand (but multiple could be ran from the console). Needless to say, this was rather antiquated even for DOS/360
standards; IBM introduced POWER (an acronym for Priority Output Writers, Execution processors and input
Readers), and Software Design, Inc sold a spooler program called GRASP. Sde note: | have read conflicting dates
as to when POWER was introduced, and | cannot confirm that its existence predates GRASP.

Alas, DOS/360 (while TOS/360 languished and eventually died) featured quite a number of successful third-party
applications, but the eventual release of 0OS/360 made DOS look more and more obsolete. Alas, many customers
continued to use DOS and it kept being upgraded alongside the hardware. With the three memory partitions the
system offered (background, foreground 1, and foreground 2), users found the simplistic system to be quite good for
what it was.

Interesting fact | cannot verify: Dave's guide states that BOS/360 had a spooler, while DOS360 and TOS360 did
not!

DOS/VS

As the System/370 matured in 1973 with the addition of the DAT box on all models (therefore giving the machines
virtual storage, i.e. memory, support), DOS sought an upgrade. While other teams elsewhere at IBM were working
on upgrading other OSes, DOS remained a strange fixture as it was still rather antiquated in its design. When
DOS/VS was introduced in 1972 (the first version being Release 28; Release 27 was the last release of DOS/360),
users now could run up to 5 memory partitions (BG, then F1 through F4; F for Foreground, later colloquially
known as Fixed)! Alas, the primitive OS still had the strange non-relocating-loader limit; though the system was
technically running within a virtual storage address space, it was more of a case of "there is a single linear virtual
address space containing all the partitions (allowing for paging on and off of DASD), but each partition still is lined
up back-to-back and therefore programs must be link-edited for the partition they will run in." This "issue" would
be fixed by VSE/SP, but I cannot find a conclusive date when it was.

DOS/VSE

In 1979, IBM introduced extensions to DOS/VS that allowed it to gain support for the then-new 4300 series; these
machines contained a new feature called ECPS that would speed up I/O performance by sharing the storage address
space the processor used with the I/O channels -- non-4300 systems could, of course, run DOS/VSE anyways. By
then, compilers were getting more sophisticated, as were the programs being ran on the system; CICS/DOS/VS was
the primary workload of choice on these systems, even though CICS/DOS/VS ran on DOS/VS. Alas, DOS/VS did
not really contain advanced networking or online development facilities; programming CICS consisted of submitting

44 Mainframe History

batch jobs (likely originating from another user under a VM system, which will be discussed later) and submitting
another batch job to make the transaction available to online terminals. When DOS/VSE became available, it began
to gain a number of solutions to these problems starting in the early 80s.

SSX/VSE

During the life of DOS/VSE, IBM sought it necessary to produce a relatively "turnkey" package of the system.
Small Systems Executive/VSE contained the following products, giving us an interesting list of the "who's-who" of
DOS/VSE program products in 1982:

e VSE/AF (see below), an upgraded version of DOS/VSE
e VSE/POWER, the job scheduler

e ACF/VTAM, for SNA networking and terminal control (which was finally made available to DOS/VSE
systems)

e VSE/VSAM, providing OS VSAM to VSE

e CICS/DOS/VS, an online transaction processing system

e VSE/ICCF, an online program development/test/compile/edit system that ran under CICS
e VSE/OCCEF, a program that oversaw the system and restarted components if they failed
e VSE/IPCS, a debugger

e DOS COBOL, a COBOL compiler

e VSE Back Up/Restore, does what it says

e VSE/Space Management, used for maintaining DASD storage

e VSE/DITTO, used to transfer data and files from one device to another

VSE/AF

Launched in 1983, VSE/AF was seen as a much-needed upgrade to DOS/VSE. It should be noted how programs
were stored and ran on DOS: a so-called "core image library" would be a dataset that contained multiple members,
of which your programs were stored in. When a program was called, VSE would fetch the MYPROG core image
(which had been already link-edited and was ready to run) from the library. Maintaining these libraries was neces-
sary only for program-related tasks. VSE/AF Version 2 changed this. Rather than limiting libraries to just core
images (i.e. programs), IBM suggested they could be used for any purpose -- source files, data files, anything.
While this certainly streamlined storage management on VSE, it was also seen as somewhat of a radical change;
CMS/DOS, a component of VM/CMS that provided DOS/VSE compatibility, could not use VSE/AF Version 2 and
newer libraries.

VSE/SP

When the IBM 9370 launched, IBM saw it fit to produce a successor to SSX/VSE (which, by then, had remained
stale; it was now 1986 and SSX/VSE was commonplace in 1983). VSE/SP combined all of the features of
SSX/VSE, but updated them to the current era. VSE/SP systems often found themselves running under VM (which
was somewhat commonplace at that time), and it saw extensive transaction-processing usage on smaller systems
that did not run OS (or MVS in that era). VSE/SP was also a 24-bit system; there was no VSE/XA.

DOS/360, VSE, and z/VSE 45

VSE/ESA

As VSE aged and the shops that ran VSE strove to push the system harder and harder, VSE was due for a major
architectural upgrade around 1990 -- this came in the form of VSE/ESA, which assumed the role of a 370/XA
upgrade for VSE/SP. In that era, there was still a desire to run what would have then been considered "old and
obsolete” 370-only machines (such as 9370s or old 4300 series machines), so the new VSE/ESA had both a 31-bit
and 24-bit nucleus (31-bit being the colloquial term for 370/XA native). VSE/ESA Version 1 was bimodal, whereas
Version 2 required ESA/370 hardware. When Version 2 was released, it included a scheduler called the Turbo
Dispatcher that finally allowed a multiprocessor system to meaningfully be utilized with a single VSE image (mul-
tiple partitions could run simultaneously across multiple processors in the machine); up to 4 processors could be
adequately used, but the VSE/ESA nucleus could accommodate up to 10.

VSE/ESA also overhauled the partitioning scheme. While later versions of DOS/VSE (and therefore VSE/AF and
VSE/SP) added a feature to the link editor to produce a relocatable module, the addresses within each partition were
still technically shared -- this meant that the BG partition could run from X'0000' to X'01FF' and the F1 partition
would run from X'0200' to X'05FF' (these are not real numbers, merely an example) and it was up to the DAT box
to stop a program in BG from clobbering the memory of F1. VSE/ESA addressed this, and also allowed for up to
384 MB of storage to be used.

First, each partition (of which there were 12 so-called static partitions, sometimes called fixed partitions) now had
their own private virtual address spaces -- every partition's memory address scheme started at 0 and it was no
longer a strict requirement to make every program position-independent and relocatable. In addition, VSE gained a
new type of partition known as a dynamic partition, wherein programs that would spill out of a static partition's
address range could run (but also physically reside in memory past the 16 MB bar). VSE/ESA Version 1 could run
up to 150 dynamic partitions.

TESADMSO01 VSE/ESA ONLINE
5686-032 and Other Materials (C) Copyright IBM Corp. 1990 and other dates
Vv Vv SSSSS EEEEEEE ++
Vv VV SSSSSSS EEEEEEE ++
VvV VV SS EE ++ EEEEEEE SSSSS AA
Vv VV SSSSSS EEEEEE ++ EEEEEEE SSSSSSS AAAA
VvV VvV SSSSSS EEEEEE ++ EE SS AA AA
VvV VWY SS EE ++ EEEEEE SSSSSS AA AA
VVVV SSSSSSS EEEEEEE ++ EEEEEE SSSSSS AAAAAAAA
Vv SSSSS EEEEEEE ++ EE SS AAAAAAAA
++ EEEEEEE SSSSSSS AA AA
++ EEEEEEE SSSSS AA AA
Your terminal is AOO1 and its name in the network is D20001
Today is 08/10/25 To sign on to DBDCCICS -- enter your:
USER-ID........ The name by which the system knows you.
PASSWORD....... Your personal access code.
PF1=HELP 2=TUTORIAL 3=TO VM 4=REMOTE APPLICATIONS

10=NEW PASSWORD

Figure 1. VSE/ESA 1.1.0 logon screen

46 Mainframe History

TESADMSL. IESEPROG VSE/ESA FUNCTION SELECTION
APPLID: DBDCCICS
Enter the number of your selection and press the ENTER key:

Program Development Library
Manage Batch Queues

Create Application Jobstream
Problem Handling

Operations

File Management

Command Mode

CICS-Supplied Transactions

ONOO1 B W

PF1=HELP 3=SIGN OFF 6=ESCAPE (U)
9=Escape(m)

==>

Figure 2. VSE/ESA 2.7.0 programmer-type menu

Something of particular interest is a little-known controversy surrounding TCP/IP on VSE. For most of its life, VSE
was notably anemic in its networking facilities outside of mainframe-native network protocols -- VSE had support
for SNA and NJE (the two stalwarts of mainframe networking for most of its existence), but it struggled to "get
with the times"” when TCP/IP came around. Furthermore, no version of VSE ever supported the OSI protocol,
something that both MVS and VM did support (in this context, the "OSI protocol” refers to the OSI protocol family
with CLNS/CLNP, TPO-TP4, etc; this protocol is completely unrelated to the TCP/IP stack). Throughout its life-
time, there were at least 2 VSE-native TCP/IP stacks:

e Connectivity Systems International's TCP/IP for VVSE, providing IPv4 support only
e Barnard Software's IPv6/VSE, providing both IPv4 and IPv6

IBM would bundle the installers for both stacks after VSE/ESA had been replaced by its successor, but the cus-
tomer still had to separately license the stack.

DOS/360, VSE, and z/VSE 47

PING 1.1.1.1

TCP200I Client -- Startup --

TCP2071 Copyright (c) 1995-1999 Connectivity Systems Incorporated
TCP202I Attempting to Establish Connection

TCP2041 Connection has been Established

Client manager connected. Generated on 04/08/02 at 02.00
Selected client: PING

001.001.001.001

PING 1 was successful, milliseconds: 00009.

PING 2 was successful, milliseconds: 00009.

PING 3 was successful, milliseconds: 00008.

PING 4 was successful, milliseconds: 00008.

PING 5 was successful, milliseconds: 00008.

Client completed: PING

TCP2011 Client -- Shutdown --

TCP205I Connection Complete -- Already Closed

Figure 3. CSI TCP/IP stack running a ping from a blank CICS screen

z/IVSE

When the System Z launched in 2000, there was a notable lack of a new VSE system until 2005. z/VSE 3.1 was
released, but it contained no new features over VSE/ESA 2.7 that came just before it -- it did not run in 64-bit
mode, and it also did not require Z hardware. In 2007, IBM did release a Z-native version of the OS: z/VSE 4.1. It
actually did support the 64-bit operating mode, and the user could use up to 8 GB of storage with it. Though user
programs can use 64-bit registers, no user program will ever actually see a 64-bit address in any partition -- the
supervisor only allowed user programs to see 31-bit virtual addresses within the partitions. A new set of compilers
was released for the new release, though they were really just rebadges of the earlier ESA generation of compilers.

48 Mainframe History

IESADMSO01 z/VSE ONLINE
5609-7ZV4 and Other Materials (C) Copyright IBM Corp. 2005 and other dates

++

++ vV vV SSSSS EEEEEEE
++ Vv VvV SSSSSSS EEEEEEE

222222 ++ VvV Vv SS EE
72222 ++ Vv VvV SSSSSS EEEEEE
2z ++ vV vV SSSSSS EEEEEE
27 ++ VWV W SS EE
2772772z ++ VVVV SSSSSSS EEEEEEE
2222227 ++ Vv SSSSS EEEEEEE

Your terminal is CL20 and its name in the network is Z62LCL20

Today is 08/10/2025 To sign on to DBDCCICS -- enter your:
USER-ID........ The name by which the system knows you.
PASSWORD....... Your personal access code.

PF1=HELP 2=TUTORIAL 4=REMOTE APPLICATIONS

10=NEW PASSWORD

Figure 4. z/VSE 4.1.0 logon screen

SYSTEM: ZVSE41 z/VSE 4.1 TURBO (01) USER: SYS
VM USER ID:VSE TIME: 1 8:53:34
F1 0001 1Q14I NO MATCHING PUB FOR 030

F1 0001 1QH3I 146 OF 742 DBLK GROUPS LOST

dq

AR 0015 1C391 COMMAND PASSED TO VSE/POWER

F1 0001 1R491 QUEUE FILE 003% FULL - 1266 FREE QUEUE RECORDS

F1 0001 1R491 USED QUEUE RECORDS: 44, CRE-Q: 3, DEL-Q: 0

F1 0001 1R491 RDR-Q: 25, LST-Q: 16, PUN-Q: 0, XMT-Q: ©

F1 0001 1R491 QUEUE FILE EXTENT ON FBA-250, SYS001, 59904, 1024

F1 0001 1R491 DATA FILE 0295 FULL - 530 FREE DBLK GROUPS

F1 0001 1R491 CURRENT DBLK SIZE=07680, DBLK GROUP SIZE=00008

F1 0001 1R491 DATA FILE EXTENT 1 ON FBA-251, SYS002, 376320, 89088

F1 0001 1R491 ACCOUNT FILE 37 % FULL

F1 0001 1R491 ACCOUNT FILE EXTENT ON FBA-251, SYS000, 465408, 2048

1=HLP 2=CPY 3=END 4=RTN 5=DEL 6=DELS 7=RED 8=CONT 9=EXPL 10=HLD 12=RTRV

ACT_MSG: HOLDRUN PAUSE: 01 SCROLL: 1 MODE: CONSOLE
Figure 5. z/VSE 4.1 system console

DOS/360, VSE, and z/VSE

49

VSEn

In 2022, a non-IBM company took over the development of z/VVSE. This company, known as 21st Century Soft-
ware, released VSEn. Since 21CW longer could use IBM trademarks, every program product on the system was
promptly renamed to an alternate name; DITTO became SMDMU, VTAM became VCDD, so on and so forth.
Otherwise, VSEN was essentially a "maintenance release;" the days of new VSE features are long since gone, with
most of the development on VSE happening in the realm of the “connectors” -- workstation utilities that make
administering, programming, and operating VSE systems a bit easier for a novice user not familiar with the panel-
driven ICCF user interface.

TESADMSO01 VSEn ONLINE
5609-VSE and Other Materials (C) Copyright IBM Corp. 2016 and other dates
2121-VN6 (c) Copyright 21st Century Software, Inc. 2022

VvV VvV SSSSS EEEEEEE nn nnn
Vv VvV SSSSSSS EEEEEEE nnnnnnn
Vv Vv SS EE nn nn
VvV VvV SSSSSS EEEEEE nn nn
Vv Vv SSSSSS EEEEEE nn nn

VW W SS EE
VVVV SSSSSSS EEEEEEE
VvV SSSSS EEEEEEE
Your terminal is A0OO and its name in the network is D7010001
Today is 08/11/2025 To sign on to DBDCCICS -- enter your:
USER-ID........ The name by which the system knows you.
PASSWORD....... Your personal access code.
PF1=HELP 2=TUTORIAL 3=TO VM 4=REMOTE APPLICATIONS

10=NEW PASSWORD
Figure 6. VSEn 6.3.0 logon screen

50 Mainframe History

0S/360, MVS, and z/OS

Initially, before the System/360 was shipped, IBM hoped that there would be a single batch OS and a single
timesharing OS (TSS/360) for users to select between. Instead, this was not the case; during the development run of
the System/360, IBM had not yet finished the "ultimate batch OS" -- OS/360. As a matter of fact, its development
was dragging so far behind that they were forced to release the aforementioned BOS/360 and BPS/360 initially. In
other words, the BOS/360 derivatives (that is, DOS/360 and TOS/360) were intended to be temporary operating
systems; stopgap measures to hold over customers until OS/360 released. Sadly, due to major ABI and architectural
differences, users found it rather difficult to port programs from DOS/360 to OS/360 when it eventually did come
out.

0S/360's development was so laggy that its release came in three major waves:

0OS/360 PCP

Because OS/360 had logged behind so much in its development, IBM was desperate to get something shipped. This
came in the form of the OS/360 Primary Control Program, bearing the Single Sequential Scheduler (SSS). In 1966,
customers could finally get a tape for what was essentially a single-tasking OS. PCP was a sequential-schedule
system where a job would be submitted from the reader, and rudimentary spooling facilities meant that the reader
would have to be pre-stacked with every job that the system would run. Needless to say, this was seen as a rather
useless system by nearly every 360 customer.lIt did have at least one redeeming quality, though: if your mainframe
had 48 KB of storage, you could run PCP and have the facilities of OS/360 without the bloat of a big multi-
partition scheduler. For customers that had CP-40 or CP-67 (which will be discussed later), PCP provided a storage-
light single-user development-capable OS system.

0OS/360 MFT

For users that had a more advanced ("midrange 360") system, they could choose to run OS/360 MFT -- Multi-
tasking with a Fixed number of Tasks. This option was called "Multiple Sequential Schedulers" (MSS), and was
also a temporary holdover measure until the third scheduler option was finished. MFT, being a more advanced
version of PCP, provided you with 4 memory partitions (similar to how DOS worked). It was notoriously difficult
to manage multiple partitions by hand from the console (as the operator would have to manually direct jobs from
the reader into a partition such that the OS/360 nucleus could parse the JCL and run the job), so nearly every site
chose to install a program called HASP -- Houston Automatic Spool Priority (as in, "Houston, we have a problem")
alleviated this, and it would live on in the MVS line as JES2 (which we will cover later).

When MFT was replaced with MVT (see below), MFT received a major upgrade called MFT-1I: gone was the
4-partition limit, you now had 52 at your disposal! The final releases of MFT-II actually eliminated the task limit,
so stalled jobs could wait in a queue and eventually be dispatched to an available partition.

0OS/360 MVT and TSO

After much aforementioned delay, OS/360 MVT came out -- Multitasking with a After much aforementioned delay,
0S/360 MVT came out -- Multitasking with a Variable number of Tasks! The scheduler was said to be of the
"multiple priority schedulers" configuration, and could even run on a multiprocessor system if the customer had the
expensive Model 65 Multiprocessing (often called the "Model 65MP™). Since MVT was not available until 1967,
the OS had gained substantial complexity; users needed at least 512 KB of storage to run this now-released OS/360.
Since MVT provided a non-fixed-partition memory management model, it was now possible to have various pro-
grams running at the same time with different memory usages. However, this introduced an interesting problem!
Because the System/360s that MVT ran on did not have a DAT box to perform virtual memory mapping, users
found that their MVT systems would have vastly-underutilized main storage after running many programs.

0S/360, MVS, and z/0S 51

This was simply due to the fact that there was no virtual memory; the scheduler would employ a best-fit algorithm
to try to find an available "memory hole™ between two (or more) running programs in main storage, and the
program could use as much storage as it wanted to until it hit the bound of the next program in the address space.
This, of course, resulted in heavy memory fragmentation, particularly on timesharing systems.

Time Sharing Option: Speaking of timesharing, the ultimate failure of TSS/360 (which will be discussed later)
resulted in a vacuum-void of a quality timesharing system (from IBM's perspective; mind you, CP-67 was well on
its way to becoming the dominant timesharing system by this time). IBM's answer to this void came in 1971 with
the release of the Time Sharing Option on OS/360 Release 20.1. Since IBM had many communications controllers
and terminals at the time, there needed to be some kind of unified way to drive all of these devices; throughout the
life of OS/360 (and DOS/360 too), there were a variety of "telecommunications access methods" (what we might
nowadays might call "an API"):

e Basic Telecommunications Access Method (BTAM), providing little more than basic typewriter terminal control
e Queued Telecommunications Access Method (QTAM), allowing terminal devices to be operated like files

e Telecommunications Access Method (TCAM), an evolved QTAM with added message-passing and queuing
support

e Virtual Telecommunications Access Method (VTAM), a true network interface and cross-system-network

When TSO was unveiled, it used the then-advanced TCAM to support a variety of terminals -- typewriter terminals,
early glass terminals that used acoustic delay-line memory to store the screen (the 2260), and the later famous 3270
series. TSO was primarily seen as a massive aid to programmers, who could now use an online editor, job result
output viewer, debugger, interactive compiler, and more in an online fashion. While the TSO command line could
best be described as "hand-keyed JCL" and the TSO editor could best be described as "an exercise in getting lost on
a computer,” it provided a framework for better applications further down the road that would turn TSO into a
proper timesharing experience (these being mainly the alphabet soup of ISPF, SDSF, SDF, and other such things).

Something of particular interest is the modularity of the system. Because PCP/MFT/MFT-II/MVT were merely just
different "kernels" running the same underlying operating system, absolutely no changes were necessary to move
programs from a machine running one to a machine running the other; even the batch job JCL that ran the pro-
grams would work. Programs running on the newest release of MFT and MVT could both spawn multiple subtasks,
allowing a form of multithreading; both scheduler options provided some form of spooling (though HASP and ASP
filled that void).

HASP and ASP: 0S/360 was intended to be as modular as possible. One of the results of that was the creation
of a universal interface for a spooler to hook into; the OS/360 nucleus itself would not be responsible for much
spooling, instead deferring to a dedicated subsystem that would perform that and other tasks. There were two major
programs that resulted from this: HASP and ASP.

HASP, or the aforementioned Houston Automatic Spooling Priority, was the first mature job scheduler for OS/360
MFT/MVT. It would live on as JES2 on the descendants of OS/360, and was written for the Lyndon B. Johnson
Space Center in Houston, Texas. It was intended to run on a single machine with one or more processors, and
newer versions of it supported remote workstations (something very important in that era, as computers were rare
and a RJE workstation in a remote office was quite a useful deal in the 1960s. Eventually, HASP gained multi-
access-spool support, allowing multiple machines connected to the same spooling disk to both execute queued jobs.

ASP (Attached Support Processor), on the other hand, was a much more complex beast. Living on today as JES3,
ASP is a real loosely-coupled multiprocessor system that released first in March 1967; two S/360s would be con-
nected via a CTCA and they did not have to be the same model. ASP also provided a level of failover should a
system crash or malfunction. Perhaps the coolest feature in the product was the fact that it actually supported
scheduling and dispatch of 7090/7094 jobs; the 360 was backwards-compatible with 709x thanks to an emulator
program. The OS could choose to engage it, and ASP would: if it encountered a 709x job, it would invoke the
emulator and run the job accordingly.

52 Mainframe History

OS/VS1

When the System/370 was announced, a new OS was in order. IBM naturally sought to provide some kind of new
OS. Learning much from the slow and difficult development of OS/360 and applying what they had already been
doing with DOS/VS, they chose to produce OS/VS1 in 1972. This was, by all accounts, OS/360 MFT-II running
within a single virtual address space. Much like DOS/VS was DOS/360 running within a virtual address space,
OS/VSL1 crutched on OS/360's relocating loader but provided virtual storage paging (what modern computer users
might know as "swapping") to the entire address space.

OS/VS1 had no TSO, but there was a version of CICS available for it and every compiler that ran under the later
0OS/VS2 would run on OS/VS1. VS1 did have its own job scheduler called JES1 (Job Entry Subsystem 1) that was
derived from the basic scheduler found on OS/360 MFT, but it was ultimately a failure (as many people had modi-
fied HASP and ASP in the OS/360 days, and wished to continue to use the software they had spent so much effort
tailoring). JES1 was relatively novel in the sense that, unlike on MFT where every reader/writer (writer being a
printer or punch) task took up its own partition, VS1 users could reclaim those partitions and only temporarily use a
free partition when a job started or finished. MFT's scheduler also used multiple spooling files on the system
DASD, but JES1 used a singular common spooling dataset -- this was a feature inspired by the spool/checkpoint
model of HASP.

OS/VS1 BPE

Plain OS/VS1 had 7 releases, with 4 releases of an add-on product called Basic Programming Extensions. These
added support for more hardware common on early-1980s System/370 machines (like 3380 DASD and newer
printers), and allowed VM to handshake VS1's console with VCNA (the precursor to ACF/VTAM on VM). Release
4 of BPE was announced in March 1984, but VS1 continued to feature IBM service until the 28th of February,
1990 -- a stunningly-long time for a stopgap OS.

IPL 14A
TEA760A SPECIFY VIRTUAL STORAGE SIZE

IEA7881 NON-PAGING MODE
IEE116A TOD CLOCK INVALID
IEA101A SPECIFY SYSTEM AND/OR SET PARAMETERS FOR 0S/VS1 76.D BPE 01.03.0
r 00, 'date=80.180,clock=10.10.10,gmt"
IEEO55A SPECIFY LOCAL DATE AND/OR CLOCK
r 00,'clock=10.10.10"
IEF5971 SYSTEM RESTART IN PROGRESS

IEF450I VMWTR .VMOOD . ABEND S2F3 TIME=03.41.01
IEF421T1 INIT=VMWTR.VMOOD (2) NO RESTART

IEF450I VMWTRZ .VMOOE . ABEND S2F3 TIME=03.41.01
IEF4211 INIT=VMWTR2.VMOOE (2) NO RESTART

IEF450I WTR .S7F . ABEND S2F3 TIME=03.41.01
IEF4211 INIT=WTR.S7F (2) NO RESTART

IEF4501 WTRZ WTRZ . ABEND S2F3 TIME=03.41.01
TEF4211 INIT=WTRZ.WTRZ (2) NO RESTART

TIEF450T INIT .P1 . ABEND S2F3 TIME=03.41.01
TEF4211 INIT=INIT.P1 (2) NO RESTART

IEF4501 INIT .P2 . ABEND S2F3 TIME=03.41.01

IEF4211 INIT=INIT.P2 (2) NO RESTART

MORE... VMHPO
Figure 7. OS/VS1 Release 7 BPE Release 3 starting under VM/HPO.

0S/360, MVS, and z/0S 53

OS/VS2 SVS

Much like OS/VS1, a stopgap port of OS/360 MVT to the System/370 was released in 1972. Working in the same
way as VS1 (where the system ran within a 16 MB virtual memory address space to allow for paging), OS/VS2
Release 1 was a major development milestone in what would later become MVS. Release 1 was often called SVS
(Single Virtual Storage), as that accurately reflected the memory-management model of the OS.

SVS, being an enhancement of MVT, changed a few core scheduler functions to properly take advantage of the new
hardware. One such example was the switchover from using less-accurate timing mechanisms on the 360 to using
the 370's interval timer. Likewise, the way that the OS loads SVC (SuperVisor Call, a system call if you will)
routines is quite different. On MVT, the nucleus would load all of its SVC routines from SYS1.SVCLIB into
various transient area memory blocks. SVS, instead, would load these from SYS1.LPALIB into the Pagable Link
Pack Area (PLPA) during a cold IPL (that is, starting the system with the CLPA option) -- this was then pagable,
unlike on MVVT where paging was not an option.

Thanks to a lawsuit with Applied Data Research, SVS (and VS1, for that fact) did not include many applications
that OS/360 once came with; this included compilers, assemblers, a sort/merge program, and some timesharing
features. This caused a price headache for some users, who were forced to pay more for what was once free soft-
ware.

SVS was intended to be a bit more reliable than MVT, and a new feature that was added to aid this was the
Authorized Program Facility; certain programs could use SVCs that may cause system damage if and only if they
were link-edited with a certain option and were placed into the system-wide link-list (think of this like the system-
wide PATH on a UNIX system). SVS also permitted users to append to the PLPA on subsequent warm IPLs (that
is, without the CLPA start option); the Modified LPA would follow the Fixed LPA specified from the SVCLIB
dataset. As primitive as this sounds now, this was seen as an advanced feature then!

SVS was also a uniprocessor-only system; customers with a multiprocessor 370 configuration would have to wait
for MVS. Likewise, it introduced no new batch spooler; it retained MVT's primitive built-in spooler, but most
customers opted to just use HASP or ASP instead (side note: there is an image of OS/360 MVT 21.8 retrofitted with
SVS HASP that you can download and run on Hercules).

SVS did include TSO, and it did include both TCAM and VTAM to drive terminals. For customers that had 2250
vector-graphics terminals, they could no longer be used with TSO as the access method library once provided by
0S/360 to drive them was no longer present. As a matter of fact, SVS didn't even include VSAM at first; VSAM
had not yet proven itself as a major storage access method at the time of SVS's release, but it certainly did by the
time of MVS's release (for the confused, VSAM was used as the underlying storage engine that many mainframe
database applications use, even to this day; it is a record-indexed or key-indexed file seeking/storage/retrieval
method).

OS/VS2 MVS
Note: also called " MVS/370"

In 1974, after SVS had ran its course two years prior, OS/VS2 was primed for another upgrade. This came in the
form of OS/VS2 Release 2, famously called Multiple Virtual Storage (or MVS). Unlike SVS, MVS actually pro-
vided multiple virtual address spaces to programs; wherein each program would only be able to access its own
private address space (in the same way that, for example, processes found themselves on a virtual memory UNIX
system). This provided a massive boom to system reliability, also aided by the natural inclusion of all of the big
new features added in SVS. Since MVS provided uniform address spaces within each job address space, it was now
possible to implement commonplace virtual memory features like shared libraries, shared communications segments,
and memory-mapped files (though MVS famously did not provide this).

54 Mainframe History

MVS also provided symmetric multiprocessing support for the first time on an OS/VS system; SVS was famously
lacking in this regard. Alas, ASP users could still use their loosely-coupled multiprocessing configurations; they
could also choose to upgrade to the new JES3 -- HASP users would find themselves installing JES2 (as both
programs had been renamed when MVS released, and IBM started to properly include them in the base OS).
Though the second-to-last release of MVT (21.8F) came in 1974 too, MVS was rapidly adopted.

MVS/SE: IBM, seeing that they could charge extra for extensions to base OS/VS2 MVS, released MVS/System
Extensions in 1978. This was mainly a performance upgrade to existing OS/VS sites, as some repetitive OS kernel
function segments were relocated into the machine's microcode (side note: | do not know how this was done). TSO
logical-swapping was introduced too, wherein a user could remain in virtual memory but be swapped out to the
DASD paging file; this definitely caused the user's online sequence to take a performance hit, but high-memory-
usage conditions could be alleviated thanks to this. There was another release of MVS/SE, Release 2, that further
microcodified the OS.

MVS/SP 1.1-1.3

The logical upgrade to MVS/SE was MVS/System Product, which bundled many useful products. These included:
e ACF/NVTAM (SNA networking)
e DFP (Data Facility Product)
e TSO Command Package
e TSO/E (TSO Extensions, replacing the TSO Command Package)
e JES2 or JES3 Version 1
Other optional products like ISPF and SDSF were frequently bundled, and this saw hefty adoption. At this point,

the version number of MVS was 3.8, which would be reflected in all subsequent versions of MVS. During IPL, the
system would display the SP release level:

TIEA1Q1A SPECIFY SYSTEM PARAMETERS FOR RELEASE 03.8 .VS2,VER=SP1.3.3 JBB1329
Figure 8. MVS/SP 1.3.4 IPL top message

----------------------- ISPF/PDF PRIMARY OPTION MENU ==---=-mmmmmmmmmmmeeme

OPTION ===>
USERID - WEC
0 ISPF PARMS - Specify terminal and user parameters TIME - 14:50
1 BROWSE - Display source data or output listings TERMINAL - 3278
2 EDIT - Create or change source data PF KEYS - 12
3 UTILITIES - Perform utility functions
4 FOREGROUND - Invoke language processors in foreground
5 BATCH - Submit job for Tanguage processing
6 COMMAND - Enter TSO command or CLIST
7 DIALOG TEST - Perform dialog testing
8 LM UTILITIES- Perform library administrator utility functions
9 1IBM PRODUCTS- Additional IBM program development products
C CHANGES - Display summary of changes for this release
T TUTORIAL - Display information about ISPF/PDF
X EXIT - Terminate ISPF using log and list defaults

Enter END command to terminate ISPF.

Figure 9. ISPF/PDF user interface on MVS/SP 1.3.4

0S/360, MVS, and z/0S 55

One of the biggest "upgrades” bought with MVS/SP Version 1 was the addition of support for the aforementioned
Dual Address Space feature of the 303x System/370 CPUs. Newer versions of MVS/SP gained support for the
Extended Real Addressing (the 26-bit real address scheme) introduced on the 3033 and 3081; information proc-
essing workloads were starting to get memory-intensive enough by the late 1970s that having more than 16 MB of
real storage began to look more and more attractive.

ISPF and SDSF: As MVS/SP was gaining more and more traction, IBM produced a rather useful user interface
for MVS. As TSO was certainly obtuse to use, many sought some kind of simplified interface. IBM launched this
in the form of the Structured Programming Facility (i.e. SPF) in 1978. This program used the 3270 terminals to
provide a proper dialog-driven interface, editor, and file manager for TSO. This would later evolve into the Interac-
tive System Productivity Facility (ISPF), and it was even ported to VM and VSE!

A similar program was SDSF, the Spool Display and Search Facility, launched in the mid-1980s. This was a

replacement to the cumbersome TSO way of retrieving spooled batch job output; many sites had both ISPF and
SDSF installed. Both programs still exist on z/OS as staples of the environment.

VIR2== = mmmmmmm oo SDSF PRIMARY OPTION MENU ==-=-mmmmmmmmcmmmmmmmmman
COMMAND INPUT ===> SCROLL ===> PAGE

Type an option or command and press Enter.

LOG - Display the system log

DA - Display active users of the system

I - Display jobs in the JES2 input queue

0 - Display jobs in the JES2 output queue

H - Display jobs in the JES2 held output queue
ST - Display status of jobs in the JES2 queues
PR - Display JES2 printers on this system

INIT - Display JES2 initiators on this system
TUTOR - Short course on SDSF (ISPF only)

END - Exit SDSF

Use Help key for more information.

5665-488 (C) COPYRIGHT IBM CORP. 1981, 1989. ALL RIGHTS RESERVED

Figure 10. SDSF V1R2 on MVS/SP 1.3.4

MVS 3.8J

In 1981, the final base (i.e. free) release of MVS would release before all development effort went into successor
systems: MVS 3.8J. This version is most famous to the mainframe hobbyist community that emerged in the early
2000s, as it was easily attained from a set of tapes found at Princeton University. The mainframe hobbyist commu-
nity has supported MVS 3.8J with updates over the years, making it into quite the entertaining system for a
mainframe newcomer.

56 Mainframe History

MVS/XA

When the System/370 XA (and later ESA/370) machines had hit the mainstream, it was time for MVS to be allevi-
ated of its 64 MB real storage limit. At the time MVS/XA was being released, application data needs had grown
past 64 MB (the 64 MB limit being the 26-bit address limit of MVS/SP). MVS Version 2 (called MVS/XA) was
released in 1983, famously developed under a version of VM/CMS that did hefty hardware simulation before the
hardware it was destined to run on (much in the same way System/370 software was developed).

XA versions of program products quickly followed, including CICS/VS, compilers, IMS/VS, etc -- the new
MVS/XA machines could now sustain many more logged-on users with improved swapping. ISPF/PDF had now
become nearly universal, and TSO became (relatively) easy to use thanks to it. MVS/XA found itself ran for about
a decade, and the 2 GB real storage limit was decided to be plenty for any computer in the 80s. 24-bit programs
could still be ran (as clever S/360 programmers realized that the upper 8 bits of a 24-bit address could be used for
other purposes), and conversion of programs to the new 31-bit addressing scheme would be done with the help of
an updated XA-capable assembler (so-called Assembler H). Some 370/XA machines available then found them-
selves bearing more than 2 processors, and MVS/XA could properly utilize these. Over the course of its life,
MVS/XA collected many important changes to the MVS line, which would gradually drag it towards its next major
release -- MVS/ESA.

IEAG97I 1/0 CONFIGURATION 00 SELECTED

TEAG91I NUCLEUS 1 SELECTED
| TEA101A SPECIFY SYSTEM PARAMETERS FOR RELEASE 03.8 .VS2,VER=SP2.2.3
| JBB2223

| IEA347A SPECIFY MASTER CATALOG PARAMETER

IEA940I THE FOLLOWING PAGE DATA SETS ARE IN USE:

PLPA - PAGE.VX23CAT.PLPA
COMMON - PAGE.VX23CAT.COMMON
LOCAL - PAGE.VX23CAT.LOCAL1

IEA301T IEFUJV NOT FOUND IN SYSI.LINKLIB

IEA301T IEFUTL NOT FOUND IN SYSI1.LINKLIB

IEA8291 SVC 66 FOR BTAM NOT USABLE, MODULE IGCOOO6F NOT FOUND IN LPA .
IEA8261 IEASVCOO: SVC244: TYPE 4 ROUTINE IGCO024D NOT FOUND.

IEA191I CONSOLE 010 DEFINED AS MASTER CONSOLE.

IEA9581 EXCP APPENDAGE NAME TABLE NOT BUILT

IEF3381 DEFAULT EDT ID VALUE 00 USED.

IEA5981 TIME ZONE = W.05.00.00

Figure 11. Console of an IPLing MVS/XA 2.2.3 system.

In addition to the changes listed, 1/0 device channels could now be dynamically selected and reconnected should
hardware failures occur; the 370/XA architecture featured a totally different 1/0 channel control model (using sub-
channels in lieu of plain channels found on normal S/370 systems), and this design allowed this facility to develop.
Cached DASD controllers were starting to develop in the mid-80s, and MVS/XA natively supported these (some
models of the 3880 had cache, and the 3990 had cache natively). To expand the performance of systems armed
with slower but still relatively quick auxiliary storage, the Auxiliary Storage Manager was overhauled to allow
paging of jobs more quickly (to get them out of main storage if a constraint is hit). Expanding VSAM disk storage,
the new Data-In-Virtual feature provided a UNIX-style memory-mapped-file access method (this would be
expanded in MVS/ESA with a feature called data spaces and later hiperspaces). The new 370/XA Vector Facility

0S/360, MVS, and z/0S 57

was also supported -- by this time, mainframes were starting to run a lot of CAD workloads thanks to advanced
vector graphics terminals (like te 5080) gaining popularity. A vector facility (somewhat akin in function to a
modern GPU 8minus the video output) provided good acceleration for such applications, and it was trivial to use
from FORTRAN programs. The last release of MVS/XA came in 1989, with the above MVS/XA 2.2.3.

MVS/ESA

Version 3: MVS/ESA was a relatively quick product, development-wise. Building on MVS/XA Release 2 (which
itself was MVS/SP Version 2, so MVS/XA R2 = 2.2.x), MVS/ESA SP Version 3 (so, MVS/SP 3.x.x) released in
February 1988. Running on the new ESA/370 machines, MVS/ESA overhauled a few key components of MVS.
Rather than allowing a process to only have a single address space, programs could now use so-called data spaces
(thanks in no small part to having a set of new access registers on the ESA/370 CPUs). By the time MVS/ESA
3.1.3 was commonplace, Hiperspaces were also present -- these were a bit different than data spaces, accessed using
two macros and functioning somewhat like DMA from the view of the program. A new facility called data
lookaside (DLF) provided a shared hiperspace facility that multiple jobs could use called hiperbatch; DFSMS made
storage management much easier by providing an IBM-native tape, DASD, and backup management product that
came with the OS (yet another third-party program you didn't have to buy or write). Communications were
becoming more and more advanced, too: in 1988, IBM released a TCP/IP stack for MVS/SP, but its performance
was limited by a number of factors. On MVS/ESA, the TCP/IP stack code saw some substantial performance
improvements and feature additions.

Version 4: MVSSP V4 released in 1990, adding support for the ESA/390 hardware that was then relatively new.
A very major feature of MVS (at least on newer MVS systems) was the parallel sysplex -- specialized coupling
hardware that provided reasonably tight-coupling (well, certainly moreso than a JES3 cluster) of multiple
mainframes together; to facilitate this, an XCF (cross-coupling facility) box had to be used. Rather than using
assembler macros to add and remove I/O device definitions (and then having to do a nucleus generation), once
could now use Hardware Configuration Definition dialog system -- this was a menu-driven application that ran from
ISPF, and thanks to Dynamic Reconfiguration Management, 1/O devices could be hot-added and hot-removed
without IPLing. Systems that possessed PR/SM (so, System/390s) would work with DRM and HCD to do this
hardware redefinition on-the-fly. The MVS console interface was upgraded too, with much more functionality to aid
multiple-console'd mainframes that were starting to be seen. As networking continued to evolve and IBM pushed
APPC (over SNA), MVS gained native support for APPC applications through APPC/MVS (meaning that APPC
was no longer the realm of VM/CMS; DOS, 0OS/2, OS/400, AlX, and any third-party platform had yet to gain
APPC support and would not do so until about 1993 or so). MVS JCL was also expanded -- you could now use
various statements like IF (already seen in VSE JCL) and INCLUDE to trigger the manual inclusion of a JCL
procedure. Version 4.1.0 and 4.2.0 was said to be rather unstable and crashy, but 4.3.0 (the last release in the MVS
V4 line) was very stable.

OpenEdition: Announced in February 1993 as an expansion to existing MVS/ESA 4.3.0 systems, OE provided
full UNIX emulation and POSIX compliance to MVS. To facilitate this, a UNIX-style hierarchical file system
(which itself was provided by DFSMS) was integrated into the system, and the OpenEdition (OMVS) kernel would
mount various HFS datasets to various paths within the UNIX-style VFS (virtual filesystem for those not familiar
with UNIX terminology). Most of the actual command line tooling was not from IBM's own UNIX, AIX, but
instead from Mortice Kern Systems's InterOpen package (which was famously seen in other UNIX emulator pack-
ages for other OSes, including the famous POSIX subsystem on Windows NT). Strangely enough, even with
OMVS being an emulation of a UNIX environment, it was actually more POSIX-compliant than most UNIX
systems on the market then (with some UNIX specialists in that era claiming that it was more than 80% compliant
with the POSIX, X/Open, Single UNIX Specification, and UNIX Certification requirements -- moreso than its
native UNIX competition)! OMVS gained the valuable FIPS 151 certification for MVS, which was necessary if the
platform was to remain a purchasable interest of the US federal government.

58 Mainframe History

Version 5: MVSSP V5 was announced in April 1994, and bought big expansions to the sysplex and Coupling
Facility features: the new Parallel Sysplex feature was an even-further-evolved incarnation of the coupling scheme
unveiled in MVS/ESA Version 4. The System Resource Manager gained a new Workload Manager expansion,
called Goal Mode, wherein the WLM will work with things like CICS to try to pre-allocate resources (rather than
lazily allocate resources when the CICS transaction asked for them). Version 5 represented the peak of the
MVS/ESA craft before it was ultimately replaced, and major work was done on this period in streamlining the OS.
A slow P/390 could run it reasonably well, even! Alas, the many complex licensing configurations and installation
methods left IBM yearning for a grand unification, and that would come with 0S/390.

0OS/390

Version 1. In late 1995, IBM began to wonder if it was a good idea to continue to offer the separate
packaging/licensing scheme for MVS/ESA. While that OS version had definitely gained quite a bit of new features
over its life, this left IBM and customers with a massive number of product configurations (and ordering MVS/ESA
was apparently becoming more and more difficult). IBM's answer in late 1995 was to attempt to unify the pack-
aging and distribution for MVVS/ESA, and this resulted in OS/390. While OS/390 Version 1 and Version 2 (the
latest release of which is OS390 V2R10) ran up until the year 2000, OS/390 itself did not really introduce many
new products.

The compilers for MVS/ESA were renamed to things like "XYZ for OS/390 and VM" (such as "COBOL for
0S/390 and VM"), and OpenEdition was integrated into the base. VTAM and TCP/IP were combined together
under the Communications Server for OS/390 name, and CICS/ESA became CICS Transaction Server. Db2 started
to become used in large distributed systems, and System/390s seemed to be adopted for big database server loads.
By then, it was the year 2000, and MVS was looking rather old with its 2 GB addressing limit.

Version 2: Alas, OS/390 Version 2 (bearing an MVS/SP number of 6.x.x, though it is no longer displayed on the
IPL screen) included a virtual tape facility through DFSMSrmm and a parallel batch queuing system called Smart
Batch. The last release, V2R10, was released on September 23, 2000; this version was ran on many systems that
were licensed for it but not newer MVS releases (like z/OS) for about a decade. V2R10 was the direct precursor to
the successor to OS/390 -- systems that released after this version found themselves even often bearing a DASD
with a VOLSER of "OS39M1" -- this is the case for the P/390 development pre-packaged ADCD systems.

z/OS

The road to z/OS was certainly rather interesting. While the 64-bit System Z hardware was essentially an expanded
System/390 CMOS 9672 machine (see the earlier information on the System/390 hardware), MVS would need some
overhauls to become 64-bit. IBM used (as usual) an enhanced version of VM/CMS to develop the "64-bit OS/390"
-- when it was done, it was decided to rename the line to the System Z (and OS/390 to z/OS).

The new 64-bit z/OS had some rather strange limitations. For instance, it was not possible to place executable code
above the 2 GB bar (note: THE LINE is 16 MB, THE BAR is 2 GB); it had to remain within the first 2 GB of storage.
However, data could be placed above the bar; it is not uncommon to see programs like CICS and Db2 eat up
storage past the bar for its own data. z/OS V2R3 alleviated this, but hardly any supervisor calls work when the code
for the running program resides above the bar. The z/OS compilers could produce 64-bit-laden operations (as in, the
programs used 64-bit registers), but they themselves did not ever generate code that resided above the bar.

z/0S V1R5 was the last version that could IPL in 31-bit mode -- future versions of the OS required a 64-bit system
as many core system modules only shipped in AMODE 64 varieties.

As z/OS proceeded through its life, it gained a variety of third-party software. IBM produced ports of Node.JS,

Golang, and other such programs; other ISVs (independent software vendors) provided other similar ports of lan-
guages like Python (though Rocket Software's offerings were notably lambasted by their users).

0S/360, MVS, and z/0S 59

Menu Utilities Compilers Options Status Help

ISPF Primary Option Menu

0 Settings Terminal and user parameters User ID . : WEC

1 View Display source data or listings Time. . . : 14:59
2 Edit Create or change source data Terminal. : 3278
3 Utilities Perform utility functions Screen. . : 1
4 Foreground Interactive language processing Language. : ENGLISH
5 Batch Submit job for language processing Appl ID . : ISR
6 Command Enter TSO or Workstation commands TSO Togon : ISPFPROC
7 Dialog Test Perform dialog testing TSO prefix: WEC
9 IBM Products IBM program development products System ID : EVIEMVS
10 SCLM SW Configuration Library Manager MVS acct. : ACCT#

11 Workplace ISPF Object/Action Workplace Release . : ISPF 5.5
M More Additional IBM Products

Enter X to Terminate using lTog/list defaults

Option ===>

Fl=Help F2=Split F3=Exit F7=Backward F8=Forward F9=Swap

F10=Actions F12=Cancel
Figure 12. ISPF on z/OS V1R5

Display Filter View Print Options Help
SDSF OUTPUT DISPLAY WEC TSUOOO50 DSID 2 LINE 0 COLUMNS 02- 81
COMMAND INPUT ===> SCROLL ===> PAGE

*hkhkkhkhkhkhhkhxhkrhxhxrkxhxxxxx [OP OF DATA #**dkkkxkkhkkhrkhrhkrkhrhkrkrhrhkrkxk

JES2 JOB LOG -- SYSTEM SYS1 -- NODE

18.32.43 TSUOBO50 ---- MONDAY, 06 OCT 2025 ----
18.32.43 TSUOOO50 $HASP373 WEC STARTED
18.32.43 TSUOOO50 IEF1251 WEC - LOGGED ON - TIME=18.32.43
19.26.48 TSUOOO50 IEF4501 WEC ISPFPROC DBSPROC - ABEND=S622 U0G000 REASON=000000
507 TIME=19.26.48
19.26.48 TSUOOO50 $HASP395 WEC ENDED
------ JES2 JOB STATISTICS ------
06 OCT 2025 JOB EXECUTION DATE
2 CARDS READ
699 SYSOUT PRINT RECORDS
0 SYSOUT PUNCH RECORDS
39 SYSOUT SPOOL KBYTES
54.09 MINUTES EXECUTION TIME
1 //WEC JOB 'ACCT#',REGION=8192K
2 //DBSPROC EXEC DBSPROC
F1=HELP F2=SPLIT F3=END F4=RETURN F5=IFIND F6=BOOK
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT F12=RETRIEVE

Figure 13. SDSF displaying job output on z/OS V1R5

60 Mainframe History

RMF VIR5 Processor Delays Line 1 of 13
Command ===> Scroll ===> (SR

Samples: 100 System: SYS1 Date: 10/07/25 Time: 10.03.20 Range: 100 Sec

Service DLY USG Appl EAppl ------ce--- Holding Job(s) -====-------

Jobname CX Class % % % % % Name % Name % Name
TCPIP SO SYSSTC 1 2 0.2 0.2 1 JES2MON

RMF S SYSSTC 1 06 0.1 0.1 1 JES2MON

HTTPD1 SO STCLOM 1 0 0.1 0.1 1 JESZ2MON

VMCF S SYSSTC 1 06 0.0 0.0 1 JES2MON

VTAM S SYSSTC 1 0 0.0 0.0 1 JES2MON

IBMUSER T TS001 O 2 0.6 0.6

JES2MON S SYSTEM 6 1 0.1 0.1

JES2 S SYSSTC O 1 0.1 0.1

WEC TO TS001 6 1 0.9 0.9

MASTER S SYSTEM 06 0 1.0 1.0

WLM S SYSTEM 06 0 0.2 0.2

CATALOG S SYSTEM 6 06 0.1 0.1

RMFGAT S SYSSTC 06 0 0.2 0.2

Figure 14. z/OS V1R5 Resource Management Facility performance reporting

0S/360, MVS, and z/0S 61

TSS/360 and TSS/370

Origins

In the mid-1960s, there was a huge emphasis on a new computing technology called "timesharing™ -- that is, "have
a share of time" on the computer (we would nowadays call this a "multiuser computer”). Timesharing systems
were also multitasking and interactive systems, and would frequently be driven via teleprocessing (that is, terminals
located physically far from the computer). Granted, OS/360 had TSO, but it was a far cry from a true timesharing
system (TSO was commonly viewed as nothing more than a hand-keyed batch job at a terminal, with TSO com-
mands that were functionally equivalent to JCL batch job commands); as such, IBM sought a true timesharing
system for the S/360 to try to get a leg up on the competition.

TSS/360

In 1967, IBM made TSS/360 available (it was not an officially supported product, and never would be; read on to
see why this was the case) for customers that had the System/360 Model 67 (the 67 had the "DAT box", which was
the 360's memory management unit that would later find its way into every System/370 on the S/370 AF line).
Despite having a very rough launch, TSS pioneered implementations of a lot of how critical concepts in computing:

e Very early implementation of symmetric multiprocessing, using a single "resident supervisor" (kernel) that com-
municated with other CPUs in the system through interrupts)

e Position-independent code, something that alleviated the link-editing issues of the earlier DOS/360's memory
management scheme

e Combined virtual-memory/virtual-machine architecture for every running user (this would later influence CP-67,
see the section on VM for more information on this)

¢ Dynamic linker (very new for 1967, TSS is perhaps the first real implementation of it)

e Table-weighted thread priority scheduler

In that list, there is an entry for a dynamic linker; for those that are unaware, dynamic linking allows a program to
load and get linked with the language runtime when it loads (as opposed to doing all of that ahead of time by the
linker, which means every routine in the language runtime library that is used in the program must be linked into
the program itself, increasing program size drastically). To save memory/storage on the memory-constrained 360
systems, TSS would employ a dynamic linker that would share a language's runtime library between several pro-
grams running it at once (or keep it in memory for another program to use later).

TSS's Dynamic Linker: The TSS dynamic linker is relatively similar to how early UNIX systems implemented
dynamic linking (like UNIX System V release 4.1). For those that are familiar with writing 360 assembler pro-
grams, you will be familiar with the concept of the CSECT. Every program will have a CSECT (control section),
some DSECTs (dummy sections, somewhat like structs in C), and a TSS-specific area called a PSECT (a prototype
section). There is also a program-writable register save area (remember, the 360 didn't have a stack). When a
program is linked dynamically, the TSS loader will load the shared library (or, well, map it) into the program's
address space (read-only, of course). In order to access the functions, the program will load the address of the
functions in the runtime library from that PSECT. When a dynamically-linked routine is called, the program will
save its registers into the save area, load the address of the symbol from the PSECT table, and jump to the routine.
As such, every program will have a unique PSECT table (as the functions will be placed into the virtual memory
address space of the program at any location, so long as it does not overlap something that's stored with the
program).

62 Mainframe History

Commands:

in the manual):
e "Task Management" (LOGON, LOGOFF, etc)
e "Data Management” (DELETE, CATALOG, DDEF, etc)
e "Program Management" (LOAD, DISPLAY, DUMP, etc)

e "Command Creation" (BUILTIN, PROCDEF, etc)
e "Message Handling" (LIMEN, BREVITY, etc)
e "User Profile" (PROFILE, DEFAULT, SYNONYM, etc)

e "Program Product Language Interface"

ASM (Assembler F)
HASM (Assembler H)
COBOL (COBOL/360)
PLI (PL/I 360)

PLIOPT (PL/I Optimizer)
FTNH (FORTRAN H)

TSS/370

Being a time-sharing system, TSS had commands! These consisted of 7 different categories (as seen

To little fanfare, IBM did provide a 370-native version of TSS as a PRPQ (a "Program Request Price Quotation")
intended only as a migration path (hopefully off TSS and onto MVS/TSO) for 370 customers. As mentioned in the
section on the 370's initial launch, the original 370s did not have a DAT box; when TSS/370 launched in 1971,
users would have to adapt their earlier 360/67 DAT box; because TSS/370 relied on intrinsics only found on the
DAT box, it is rather difficult to run TSS/370 under VM.

A fun fact that seems to be poorly recorded: the announcement for TSS/370 occurred at the same time as the
official decommital (and therefore soft-cancellation) of TSS/360; this was done under heavy pressure of various
execs that, though they tried to kill the CP/CMS project, realized that it was a far superior timesharing system to
TSS. An interesting note about TSS is that it actually uses 31-bit addressing, and the sneak-peak teaser for the
370/XA machines (wherein all 370 machines would gain a 31-bit address space) was released at the same time as
this TSS debacle. For the curious, this May 1971 meeting was held at the Westchester Country Club.

TSS/360 and TSS/370

63

?
1s
ENTER PHY ADDRESS OF CARD RDR OR DEFAULT = EOB.

ENTER ADDR OF PAGING DISK

251

PRINT MAPS? 0 1 2 3...NONE IVM RESSUP BOTH

3

ENTER CODE FOR FUNCTIONS NOT TO BE LOADED.ALL FUNCTIONS WANTED = EOB

99

QUICK START REQUESTED? IF Y ENTER ADDR OF PACK FOR QUICK START DATA SET--N = EOB

DELTA DATA SETS? Y OR N

n

CURRENT CLOCK VALUE IS 12/05/25 10.27.59 IS CLOCK CORRECT?
no

ENTER DATE AND TIME AS

MM/DD/YY HH.MM.SS

16/07/85 10.28.30

DEPRESS TOD SWITCH

CURRENT CLOCK VALUE IS 10/07/85 10.28.31 IS CLOCK CORRECT?

yes
$ run

BULKIO REQUIRED?
y

Y ACCEPTED

10:28:45 SYSOPERO NO DRUM PATH AVAILABLE

10:28:45 TSS00001 BATCH MONITOR HAS BEEN INITIALIZED

10:28:45 R=0001 SYSOPERO VALIDATE THE SYSTEM HARDWARE CONFIGURATION. REPLY OK WHEN DONE.
reply 1,0k

TSS370

STARTUP COMPLETE,USERS MAY LOGON

10:28:56 SYSOPERO *CZAWS* ASNBD'S DONE: A20E-01.

10:28:56 SYSOPER® *CZAWU* BSN=0316 STARTED ON 020E, SYSOPERO.SYSLOG.GOO30VOO

10:28:56 ->->-> SYSOPERO CZCMD 004I ON PTR 020E MOUNT FORM PAPER
MOUNT CARRIAGE TAPE SAME

MOUNT CHAIN/TRAIN 'PN'

SET DENSITY 6

THEN NR/R

10:29:15 ->->-> SYSOPERO CZCMD 002I

VERIFY THAT THE FOLLOWING 20-CHARACTER MESSAGE APPEARS ALSO ON PTR 020E,
- *%x BUFFER LOADED ABOVE. *

sard

SYSTEM ACTIVITY AND RESOURCES AT 10/07/85 10:29:37

REPLYS: 0

USERS - CONV: 1 BACK: 1 REM : 0 RJEA: 2
QUEUES- EXEC: 0 PRNT: 1 PNCH: 0 TAPE: 0 RJE : 0
AVAIL - PTRS: 1 RDRS: 2 PUNS: 2 TAPS: 48 DISK: 150
PAGES - PUB : 18108 TEM : 0 AUXDR : 0 AUXDK : 22499
TSS370

Figure 15. TSS/370 Release 3 starting up

64 Mainframe History

?

logon tss

TSS/370 RELEASE 3.01

ENTER PASSWORD
XXXXXXXXEEEEEEEEMMMMMMMMi bm

TASKID=0012 LOGON AT 10:35 ON 10/07/85
_logoff

LOGOFF AT 10:59 ON 10/07/85

TASK ABENDING. ANY BUFFERED OUTPUT CONTINUES.

CZAFJ - NON-ZERO RC FROM RELEAS (CZCAD1)
CZAFJ - NON-ZERO RC FROM RELEAS (CZCAD1)
TASK DELETED

?

Figure 16. TSS/370 Release 3 user logon and logoff

TSS/360 and TSS/370

65

RAX and MUSIC

In the void of TSS, several systems emerged. While VM (to be discussed later) would become the dominant
timesharing system on the 370 line, several one-off systems were written. One of those was called RAX, and it was
introduced in 1966.

RAX

IBM worked with Lockheed to produce Remote Access Computing, a system that evolved out of RACS (an earlier
system, seemingly rather poorly documented). The original target of RAX (which had the program number
360A-CX-17X) was a System/360 Model 30 or better, bearing at least 64 K of storage. There were two choices for
terminals: the 1050 remote typewriter terminal, or the 2260 display terminals (of interest as they were the precursor
to the legendary 3270 series, and famously used acoustic delay lines to store the screen image).

RAX had online compilers for BASIC (which was derived from CALL/360 BASIC), COBOL, FORTRAN IV, and
Assembler F. Several sites adopted this because of the online nature of the system:

e US Department of Agriculture
e McGill University

e Boston University

e University of St. Andrews

e University of Rhode Island

e Lockheed

e Bell Aircraft Corp

RAX, being relatively commonplace in an academic environment, led to the development of further systems,
including...

MUSIC

When McGill installed RAX, they found it rather impressive and began to modify it. In 1972, McGill's stack of
RAX modifications was added to IBM's catalog of user-written programs as the "McGill University System for
Interactive Computing” (i.e. MUSIC). It provided a primitive interactive timesharing environment that rapidly
gained more and more features; when version 4.0 came out (in 1978), true filesystem permissions and other such
features were introduced. When the IBM 4300 series System/370 machines became available, MUSIC 5.0 gained
support for those but also the "new" FBA DASDs.

In 1985, IBM saw MUSIC and chose to adopt it as a System Product, and so MUSIC/SP was born. Version 1.0
added real virtual storage support (which was surprisingly lacking that whole time); version 2.2 in 1990 streamlined
performance; version 2.3 introduced the current MUSIC/SP filesystem and the TCP/IP support the system became
so well-known for all in 1991. Rather than having a "real" TCP/IP stack, MUSIC/SP (when ran under VM) would
be able to talk to the VM/CMS TCP/IP stack via IUCV and use that for networking services (this will be described
in more detail later).

The Filesystem: Gaining ideas from other systems like TOPS, the MUSIC/SP filesystem is assembled as a
single file index that can span multiple DASD volumes. Files could be located in the file index in a single opera-
tion by performing a hash function operation on the username. The filesystem was modelled after that found on
MS-DOS, with directories and flat files throughout. The DOS "drive letter" was the user ID, and directories func-

66 Mainframe History

tioned and were used just like on DOS. There were two kinds of files: public and private. To save on disk space in
an era where disk space was a rare and expensive thing, all files were compressible.

The Emulator In an era of mainframe OS compatibility, MUSIC joined the fray with its own MVS emulator.
Many of the compilers and language interpreters were ran on the MVS emulator, to great success! The emulator
implemented a small subset of MVS supervisor calls (i.e. system services), and it was remarked that MVS programs
could run on MUSIC faster than they could run on real MVS (though | have yet to see a citation for this). Full-
screen TSO services were also emulated, allowing for program packages like GDDM and DisplayWrite/370 to work
flawlessly on MUSIC. Since MVS DASD storage is accessed through dataset mechanisms and not (generally) a
DOS-style filesystem, the MVS emulator contains a facility to map a MUSIC user file to a MVS dataset name.

The Networking: Even though it showed up a few years late to the TCP/IP stack race, MUSIC/SP's TCP/IP
facilities (by way of the VM TCP/IP stack) were rather famous. Generally, sites would run two copies of the VM
TCP/IP stack, with one being dedicated to MUSIC and the other being present for CMS applications/users (the two
would interlink using an IUCV socket; see the section on VM for more information on both this and the VM
TCP/IP stack). MUSIC also had an HTTP server and browser, a Telnet client, and a visual FTP client to accom-
pany the FTP server program.

The Emails MUSIC was somewhat known for its email handling system, and several mailers had been written
over the years. The most commonly-used one was called RDMAILER, and it would work with both SMTP sites
and RSCS/NJE (i.e. BITNET) sites through a modified RSCS running on the VM host (as nearly all MUSIC
systems were ran under VM if they wanted networking). Pieces of WISCNET (itself a TCP/IP stack for VM,
which would later go on to become the famous "FAL" TCP/IP stack IBM provides) were ported to MUSIC, and
MUSIC functioned as a "client" to a WISCNET stack running elsewhere on VM. Though MUSIC never gained
support for protocols like NFS or the Sun ONC/RPC system (even though MUSIC was often found in UNIX envi-
ronments at universities), what was available was of notoriously good quality.

The Job Language: For the most part, MUSIC's JCL was intended to be a simplified imitation of the JCL
found on MVS systems. Programs could be ran with ease, as essentially every key program would be found in the
LPA (just like on MVS). For example, the C compiler could be ran like this:

/SYS REGION=16384

/FILE SYSLIN NAME(CTEST.TEXT) NEW(REPLACE)
/FILE SYSLIB PDS(*.H,$IBC:UPK.*.HDR)

/LOAD C370

/OPT MARGINS(1,80) NOSEQUENCE

/JOB NOGO

#include <stdio.h>

int main() {
puts ("MUSIC C compiler demo\n");
return 0;

}

Within reason, MUSIC was seen as a rather "easy" system, but its demise in the early 2000s as it was starting to be
seen as obsolete meant it was over. Also, note that PDS argument to /FILE -- this assembles a PDS based on those
MUSIC disk files.

RAX and MUSIC 67

MM MM UU uu
MMM MMM UU U S
MMMM MMMM UU VIV
MM MMMM MM UU uu
MM MM MM UU uu
MM MM UUUUUUULU S
MM MM UUUUUUU

SSSSSSS
SSSSSSSS
SS
SSSSSSS
SSS
SSSSSSSS
SSSSSSS

ITIIII
ITIIII
IT
II
IT
ITIIII
ITIIII

cceceecc / SSSSSSS
cceeecccc / SSSSSSSSS
cC [/ SSS

cC / SSSSSSS
cC / SSS
cceeeeeee / SSSSSSSSS
ceceeeee / SSSSSSS

Multi-User System for Interactive Computing / System Product

Press the ENTER key to view next page when you see this message --->

Figure 17. MUSIC/SP ESA 5.3 logon screen

Command ===>
* NO NEW MAIL =

Place the cursor on an item and press ENTER or RETURN.

MUSIC tools:
Mail
Programming

Electronic mail facility
Compilers, processors, tutorials, etc

Internet access, news reader, gopher, etc

Full Library Screen for current directory

< pattern

General help and online documentation

Terminate your session and disconnect from MUSIC
Make a suggestion or send a comment to support staff

CI Course Information

Internet

More Other general MUSIC tools
MUSIC files:

FLIB =

FLIB Filespec=> WEGO:=*

FUTIL Other file related utilities
MUSIC environment:

Help

New Password Change your password

Defaults FSI customization

Profile Profile utility and options

off

Suggest
F1=Help F2=Suggest F3=End

Figure 18. MUSIC's Full Screen Interface

68 Mainframe History

F9=Find

F12=Retrieve

PPPPPPP
PPPPPPPP
PP PP
PPPPPPPP
PPPPPPP
PP

PP

More...

Page 1/1

MTS

The Michigan Terminal System was an interesting OS, born of the 1960s, for the System/360 Model 67. Remember
earlier the discussion about the 370-67's DAT box -- this is what was necessary to make MTS work. As you can
probably guess, MTS was a timesharing system, developed by and for the University of Michigan Computing
Center.

MTS itself is comprised of several components, and it evolved to remain current with other System/360-family
OSes over time. Parts include:

e The University of Michigan Multiprogramming Supervisor (UMMPS): the core of the OS; this provided a
multitasking, multiprocessor, timesharing, virtual memory supervisor program that allowed for the execution of
several simultaneous reentrant programs started by users

e Command Language Subsystems and Job Programs: these handled user interaction

e Various user-written applications and IBM-written applications, like compilers and runtime libraries

Now, let us examine the history of this fine system.

History

Before MTS, the University of Michigan had and IBM 7090 mainframe, and wished to run it for academic pur-
poses. Their solution to this problem was to take the General Motors Executive System (itself hailing from the IBM
701) and modify it into the University of Michigan Executive system (called UMES). This was a batch system, and,
by the time it was adopted, it was obvious that timesharing was the future. While UMES was certainly tailored to
run reasonably well under a load of many small/short jobs that students and staff would submit, it was clear that
this was a dying form of computing in the academic space. Remember, before the invention of virtual memory,
computer execution capacities were primarily limited by the availability of real memory, and that exhausted quickly
in that era too.

IBM was famously hesitant to support a timesharing workload on the System/360 -- this is why many often remark
that the 360 itself was a step back in computing technology, as many other computers (like those mentioned in the
introductory chapter of this book) already had virtual memory support (and timesharing was readily adopted on
these). Several people who were at the University of Michigan published a rather influential paper on the topic of
timesharing in January 1966 in the Journal of the ACM entitled Program and Addressing Structure in a Time-
Sharing Environment.

While CTSS (devised at MIT) did not employ a virtual memory system in the modern sense we understand today,
this paper described a timesharing system that worked with a modern virtual memory system (and described what
would become the System/360-67's DAT box). IBM was, as discussed elsewhere in this book (particularly in the
section on VM/CMS), hesitant to provide such a thing.

After hefty discussion with the University of Michigan folks that wrote the paper, IBM finally agreed to design a
special variant of the System/360 Model 65 explicitly intended to support this timesharing system -- this was called
the System/360 Model 65M (the M for Michigan). Since IBM initially did not provide a timesharing operating
system with the System/360 announcement, this new development at the University of Michigan started to make
headwinds around the computing industry rather quickly.

Several other System/360 customers caught wind of this: MIT's Lincoln Laboratory (the one that would later
become the wellspring for CP/CMS), Princeton University (a very influential IBM shop), Carnegie Mellon Univer-
sity, and even General Motors (who always had a fascination with timesharing even in the early days of com-
puting)! The System/360 was already a hit with these customers, but they saw it as a batch-oriented system -- when

MTS 69

they heard that someone was planning to do timesharing on one, there was a bit of a demand for these special
System/360 Model 65M machines!

IBM would repackage and slightly modify the S/360-65M into the System/360 Model 67, and it became an
officially-supported IBM product. As soon as that was made available, over 100 customers tried to acquire one;
after the S/360's launch, IBM learned the error of their ways and relented; as a response, TSS/360 was born (and
quickly died to its customer-written competitors, you can read more about that in the TSS chapter). This new OS
was supposed to be delivered approximately at the same time as the S/360-67, but people got impatient.

IBM was somewhat slow to deliver that S/360-65M to the University. As a response, the University Computing
Center people cleverly designed a simple timesharing system for a System/360 Model 50 that they had (this was
funded by an ARPA program called CONCOMP, the Conversational Usage of Computers). The original codebase
for this system consisted of two halves: a "half-page of code written out on a kitchen table" and a modified
program from MIT called the Lincoln Laboratory Multiprogramming Supervisor -- if that name sounds familiar,
that's because the UMMPS core of MTS is actually derived from MIT's work! The MTS job program would run
under the control of LMMPS, and was quite interesting. Starting in 1965, the University was well on the way to an
OS of their own.

The CONCOMP research project was intended to "anticipate the availability" of the S/360-67, and the machine was
delivered on time with no delays. However, what the staff at the Computing Center had written was, really, a
stopgap measure to "warm up” their minds to write a full timesharing system. They fully expected to discard this
system as soon as TSS/360 became available, and, they did. The paper on CONCOMP notes that, while the engi-
neers were happy that the S/360-67 arrived on time, they were quite unhappy that TSS/360 did not. Furthermore,
TSS was plagued by performance and reliability issues -- something that came to define TSS as a massive failure in
IBM's history. The paper also lambasted TSS for not even supporting all of the terminals that IBM had on the
market at the time; note that IBM did have graphical terminals, and various soon-to-be-timesharing sites had these!
To make matters worse, IBM did not sell a single terminal controller that could uniformily control all these varie-
ties of terminals.

Fed up with TSS lacking support and quality for just about anything that the Computing Center required, the Com-
puting Center staff agreed that the only way forward was to keep working on that stopgap OS they threw away a
few months ago. Transitioning from the S/360-50 to the S/360-67 took a while, so the staff continued development
on the S/360-50. The team had several goals they wished to achieve:

e Design a conversational system that could "support any type of effective man-made interaction"
e Develop a hardware attachment that could support a myriad of remote terminals
e Be able to support 50 to 60 interactive users with 4 to 6 batch jobs, concurrently
e Be able to support high-level language compilers, graphics applications, and more
e Participate on a network, those being the early ARPANET and MERIT network
TSS was doing so bad by then that IBM literally cancelled the project, but would later reinstate it; all the while,

MTS continued to grow. LLMPS was morphed into UMMPS, and development took off. Being an academic system
first and foremost, a consortium was founded to maintain and develop MTS. The members were:

e University of Michigan (1967-1999)

¢ University of British Columbia (1968-1998)

e University of Newcastle upon Tyne (1969-1992)
e University of Alberta (1971-1994)

e Wayne State University (1971-1998)

* Rensselaer Polytechnic Institute (1976-1992)

70 Mainframe History

e Simon Fraser University (1977-1992)
e University of Durham (1982-1992)

The sites that did run MTS often ran multiple MTS systems, and for good reason: MTS systems could network
together!

Computers Running MTS

The first machine that ran MTS was the single-processor S/360-67 that the Computing Center acquired in early
1967 (which bore the serial number 2, the first to leave IBM). This initial implementation did not yet support
virtual memory, but it could sustain 5 online users and 1 background batch job. In November 1967, the engineers
added virtual memory support; this upped the number of users to 50 and the number of batch jobs to 5. It should be
noted that IBM actually sold a duplex (i.e. two processor) variant of the S/360-67; the Computing Center acquired
one of these in August 1968, and it replaced the earlier simplex (i.e. one processor) system -- by then, the system
could sustain 70 users and 8 batch jobs.

The University of Michigan continued to upgrade, but not always to IBM hardware! They received the second
Amdahl 470V/6 ever made in 1975, and MTS worked great on it. Having great success with this IBM competitor,
they continued purchasing their computers -- they received the first shipped Amdahl 5860 in 1982. They chose to
return to IBM to receive the first factory-shipped 3090-400 in 1986, to great success.

MTS's open consortium nature meant that MTS sites often contributed new code back to the original project (much
in the same way that the development of CP/CMS went). Rensselaer modified MTS to support 32-way multi-
processor S/370-XA processors in 1984 (a big boom over the original 4 supported by 370-non-XA MTS), but the
6-processor system at RPI was likely the largest system MTS was ever ran on. In 1991, the Computing Center
upgraded again to an IBM ES/9000-720, and could support over 600 users! It is believed that the last MTS site to
exist was actually Rensselaer's MTS system, which was retired in June 1999.

Front-End Processors: One of the requirements associated with the CONCOMP project was terminal and net-
working support. Initially, the Computing Center used terminal controllers like the IBM 2703 or Memorex 1270 to
support asynchronous serial lines (many of which were attached to modems), but this was a terrible solution. For
one, the 2703 (unlike the later 3705) was a fixed-function and non-programmable system; feeling the limitations of
this, the CC engineers came up with a clever solution: attach a PDP-8 (later a PDP-11) to a S/370 via a parallel
channel, and use that to handle networking and terminal control!

The U of M was the first to attempt this (after all, they had the idea), and they called it the Data Concentrator. This
was a modified PDP-8 born out of the requirements of the CONCOMP project, and was actually the first non-IBM
device that ever attached to an IBM mainframe channel interface. This evolved into a two-tier system and was
converted over to a PDP-11 architecture; the second tier was called the Remote Data Concentrator, and it networked
with the Data Concentrator at the Computing Center over synchronous serial (as was common in the day).

The University of British Columbia produced an upgrade to this system; they developed two PDP-11 boxes: the
Host Interface Machine (HIM) and Network Interface Machine (NIM) were true network controllers for MTS.

Networking and MERIT: Though the DC/RDC and HIM/HIM systems were great, they were initially not the
best solution for networking: the University of Michigan and Wayne State University to design hardware to support
the MERIT Network. This came in the form of a dedicated PDP-11 that they called a Communication Controller;
these attached to a parallel channel on one end, and talked to remote CCs on the other end. These first permitted
host-to-host remote logon connections, and later supported terminal-to-host connections (with the terminals being
driven directly by the CC); since batch jobs were still frequently used, batch-to-host support was also added to
facilitate remote job submission.

MTS 71

The original host-to-host system was explicitly developed to allow remote access to and from non-MTS computing
systems. This first came in the form of the CDC SCOPE/HUSTLER system that Michigan State University had.
Eventually, the MERIT people renamed the CC to be a Primary Communications Controller, and then developed a
Secondary Communications Controller. The PCPs were the main network nodes, and could communicate with each
other via either Ethernet or synchronous serial. SCPs were in turn connected to PCPs via synchronous serial links.
The PCP and SCP would be able to attach to GTE Telenet, Tymnet, ADP Autonet, and more -- this was then
updated to add support for TCP/IP connections (and the 370 channel devices emulated on the PDP-11 to do this are
now emulated by the Hercules emulator).

The MERIT Network PCP/SCP project was huge: at the peak of MERIT's development, there were more than 300
PCPs and SCPs with a combined total of about 10,000 terminal ports.

Job Spooling: Though it was not originally written for MTS (and was instead written for OS/360), MTS
included HASP (which would later become JES2 on the MVS line). There were other spoolers available, but nearly
every site ran HASP; it was quite well-integrated with the system, and could handle both card-submitted batch jobs
and jobs submitted by online timesharing users (as one would expect). Of course, spooled output devices (printers
and punches) were under the control of HASP.

Versions
Over the years, the following versions of MTS existed:
D1.0

There are two extant versions of MTS 1.0, only one of which has been archived. The first was produced for the
University of British Columbia's Computer Center in October 1968, and the second was produced for Newcastle
University (i.e. NUMAC). The second one was produced by copying the tapes from the first version and appending
any changes/upgrades onto the end of the tape volume. This version was intended to run only on a System/360
Model 67.

The base MTS system was not very feature-rich on this version, but the system did have some interesting compo-
nents, including (but certainly not limited to):

e Lisp

e Assembler G

e GPSS-360

e PL/360

e FORTRAN G (FORTRAN Il compiler)

e Support for the 2250 display terminal

e Support for the 2703 communications processor

e SNOBOL4

e WATFOR (Waterloo FORTRAN)

e Sort/Merge

* An accounting system

The NUMAC updates included a PDP-8 assembler, updates to all the compilers and assemblers, fixes for the 2780
line driver, and a PL/I compiler/library.

D1.0 Mod 1

72 Mainframe History

This was a tape that had some revisions to the D1.0 distribution; these were intended to stack on top of NUMAC's
version of D1.0. This version was believed to be released sometime in 1969, but there are no certain dates. Update
included:

e WATFOR (Version 0 Level 7, August 6 1968)
e Updated device tables
e Updated system editor
D2.0-D2.3
This version was released in February 1970, and was a mostly incremental update from D1.0 Mod 1. The D2.0
tapes that do exist mainly contained documentation updates, but some interesting things were added:
e XCOM
e A new dump/restore program
e Revised RJE support
e PL (a dialect of PL/1 for teaching)
e GPSS/360
e WATFOR (same version as D1.0 Mod 1)
e Assembler simulator

D2.1 (from June 1970) was an incremental update that updated device tables; D2.2 (from 1971) included a format
driver to automate system installation; D2.3 (1972) included a version of BASIC.

D3.0

Released in August 1973, this version included a variety of new tools. Being a new major release, this was distrib-
uted on quite a number of tapes (coming on 6 1600 BPI tapes, or 9 800 BPI tapes). The last tape in the tape set
(whichever density the site asked for) is a self-restoring dump/restore tape that would install the MTS starter
system. The D2.2 driver file system provided its driver file on the last tape. The format of that last tape is as
follows:

e The TSS DASDI program, used to initialize a DASD for the system to be restored onto
e The TSS Dump/Restore program, used to read the starter system further down on the tape

e The TABLES deck generator program, which would be IPLed to produce a TABLES card deck used for instal-
lation later

e The OS-derived ISSDASDI program, used to format a DASD pack that would hold HASP spooling space
e Data for the TABLES deck generator program
e The dump/restore data
e The TABLES program's source
e An assembly listing of TABLES
By this release, HASP was fully configured to accept remote workstations (using RJE; see the sections earlier in

this book on it, or flip to the index at the back to find it quickly). The version of HASP found on this MTS release
explicilty supported the 360/20, other 360s, an 1130, an 1800, or a System/3 as an RJE workstation.

The following programs were included on this distribution:

MTS 73

e Assembler G
e PL/I

e PLC

e GASP

e BASIC

e UMLOAD

e APL

e PL/I

e Accounting system
e Billing system
e Virtual 67

e DITTO

e ASMTIDY

e TSS assembler
e Polygraphics
e SNOBOL4

D3.1-D3.2

Rather than a rather manual update method, these revisions (released in March 1974 and March 1975, respectively)
were much easier to install (thanks to the power of the installation driver system). These versions contained differ-
ential updates to the various programs and compilers found on base D3.0, and carried the OS to its next major
release.

D4.0

In August 1977, the next release hit. The tapes for this distribution came either in 1600 BPI or 6250 BPI density
variants, and was split across at least 3 backup tapes with 1 dump/restore tape containing the starter system (which
installed like the D3.0 release). This release was twice as big as the last release, and was in a slightly different
format. The tapes were in the format of a dump produced by the MTS *FS program, and the installer could use a
program called RAMROD to create the new nucleus. The release was a massive program update of the previous
release, and did not really add anything new.

D4.1-D4.3

Coming on one 6250 BPI reel in May 1978, D4.1 introduced a better way of communicating what changes were
being made. A clever SNOBOL4 program generated a “change form” that described what changed. This release
was an overhaul of system internals, and not so much programs.

March 1979 bought D4.2, which came with a dump/restore tape (which meant the system could be installed straight
away for a new install site); alas, that dump/restore tape has seemingly been lost. This version contained updates to
most of the programs and compilers present on the system; since it came on 3 tapes and was a pretty large update,
the University of Michigan saw it fit to just include a restorable system.

D4.2A came in July 1979, and was rebadged as Redistribution 16 (RD16) -- this may seem confusing as first, but U
of M asked for all of the MTS sites to send in tapes containing their system to be redistributed to every other MTS

74 Mainframe History

site. This was done in a rather haphazard method, and there was no attempt made to produce anything that was
consistent, simple, or easy to install. Alas, a driver file was made, so installation was at least possible.

D4.2B (RD17) came in October 1979, and was a very small supplement intended to overlay on D4.2A.
D4.3 released in May 1980, and added support for more hardware. Growing on the 1977 original 4.0 release, this
release included updates to:

e PDP-8 cross assembler

e Linear algebra software

e Waterloo FORTRAN updates

e Extended XPL

e Support for the Memorex 1270 (a 3274 clone)

e ALGOL compiler updates

e Additional terminals (T1 Model 733, DECwriter)

D5.0

Around this time, MTS releases started to slow down. Most sites had started to explore other interactive timesharing
systems (including early UNIX, VMS, and even VM/CMS), but D5.0 was released in August 1981. A full 360 MB
distribution on 4 tape reels at 6250 BPI density, the following new components were included:

e PL360

e Extended XPL

e GASP (mentioned before, this is the General Motors Associative Programming Language)

e WIREWRAP

e REDUCE 2

e PDP-9 remote graphics terminal driver

e Statistical computation programs

e Linear algebra programs

» Fourier transform routines

e PDP-8 assembler and linker

e SPIRES

e MTS APL

e Z80 and 8080 assembler
D5.1
This release was mostly the same as D5.0, and was released in August 1983. Note the programs that were added on
D5.0 -- MTS was a key platform for the burgeoning microcomputer race (and this would end up being its
undoing!). This distribution consisted of a one-tape update to the base release, and could be installed with the driver

program.

D6.0.

MTS 75

At long last, the last version of MTS was upon the world. Many years after the D5.1 release, U of M released D6.0
in April 1988. By then, TCP/IP support had been added using the aforementioned two host interface processor
methods, but development had mostly stalled after D5.1's released -- the shutdown dates of various MTS sites were
mostly in the early 90s (as mentioned earlier). This final version was the “gold master” of MTS, and consisted of 9
tapes.

Alas, this version was the first to support 370/XA machines, and TONS of new features were added. These include:

e 370/XA support, but not ESA/370 support. This would be rectified in the future, though.

e Named Address Spaces, something that functioned like Discontinuous Saved Segments on VM. These were
used to allow programs to share libraries and data, and loaded at IPL time into the virtual address space.

e Expanded Storage support, which MTS used as a store-through-mode disk cache. Writes were written imme-
diately to DASD, but reads were backed by the cache.

e Vector Facility support. This was used by having an program that used the opcodes and registers for the VF;
MTS would save and restore the contents of the VF across task-switching timeslices.

e More message support. This was an enhancement to the *MESSAGES facility to allow more than 2.1 million
messages.

e More programs: $SMAKE, $FTP, $DUPLICATE, $FSM (Full Screen Message), $SHELP, and an improved editor

e Resource Manager. This was a program, written by UBC, that could be used to drive an NJE network (it
apparently also had printing support, but this was not used in a distributed-system MTS cluster).

e Network support. This added support to the base distribution for UBCNet and Merit network interface hard-
ware.

e HIM support. This is the aforementioned TCP/IP host processor for MTS, developed at UBC. This supported
UDP, TCP, and TLNT (telnet) devices on the logical channel the HIM exposed to the host, and could run an
FTP server.

e Updated DASDI program. This added support for 3380s and CMS minidisks.

e Rewritten FBA support. This new FBA driver code could use the integrated 9370 FBA DASD disks (the 9332
and 9335, as well as clones, were supported).

e Network Server support. A Server is a different type of connection to MTS (the other two being Terminal or
Batch) wherein a remote system would connect to a system to perform a login; once that was validated, files
and jobs could be transferred.

Needless to say, MTS got very advanced on this release; this release was certainly the largest of all of the predeces-
sors by a significant amount!

D6.0A

Years after, in January 2012, three hobbyists (who are Mike Alexander, Jeff Odgen, and Gavin Eadie) dusted off
the MTS 6.0 distribution and tried to get it running on Hercules. To their surprise, it mostly worked... but the
installation process was painful and not very turnkey. As such, the MTS D6.0A distribution was made available in

the form of a single 3380 disk (alongside a Hercules configuration file).

Author's note: | tried to get this to run on a real 390 mainframe, but | couldn't get it to IPL; apparently, it will not
work with either a Bustech or IBM Shark 3380 controller!

76 Mainframe History

University of Michigan Computing Center - Device: DS02 Task: 40 ge 1/1

)
%

MM MM TTTTTTTTTTTT SSSSSSSSSS
MMM MMM TTTTTTTTTTTT SSSSSSSSSSSS
MMMM MMMM 1T SS SS
MM MM MM MM 1T SS

MM MMMM MM 1T SSS

MM MM MM 1T SSSSSSSSS
MM MM 1T SSSSSSSSS
MM MM 1T SSS
MM MM 1T SS
MM MM 1T SS SS
MM MM 1T SSSSSSSSSSSS
MM MM 1T SSSSSSSSSS

Figure 19. MTS 6.0A user terminal screen

MTS 77

CP/CMS, VM/CMS, and z/VM

In the wake of TSS's commercial failure as a software platform, a true successor would emerge. This came in the
form of VM/CMS, but its history was long and convoluted. Despite having a rough start, it found itself cemented
in a rather interesting position in the world of computing: many saw it as a parallel universe alternative to UNIX,
and several people remarked that CMS had better UNIX features than UNIX itself (a big example of that being the
infamous "CMS Pipelines" program).

Origins: before VM

The first timesharing system ever demonstrated in a meaningful capacity came out of MIT in 1961. The so-called
"Compatible Timesharing System™ (or CTSS for short) found itself as both an academic miracle and a commercial
marvel. While CTSS was originally somewhat primitive, it would later go on to influence every other timesharing
system (including VM, but also Multics). Keep in mind, computing was radically different during CTSS's heydey;
computing then was nearly entirely based on batch processing, and interactive work was almost completely ignored.
While CTSS was used in a meaningful capacity from 1964 to 1971, a second-generation system was quickly
wanted. MIT (and others) saw the massive success that academic and scientific users had with timesharing, and
wanted to spearhead the second "greatest hit in computing" of the time: Project MAC.

While IBM was trying to get commercial computing companies to improve their timesharing offerings, it quickly
became apparent that they would have to do most of the work themselves. Project MAC would later go on to
produce Multics on the GE (and later Honeywell) mainframe line, but the "spirit of the problem" still remained.
One of the hardest problems was finding a computer that could actually sustain many logged-on users. While the
Project MAC team settled on the aforementioned platform, many industry vendors provided their own bids for
hardware. One of those was the repeat-supplier IBM (who had already given MIT plenty of computing hardware
and support before), and they offered a System/360. However, the MIT guys hated the 360! The machine didn't
include the address translation hardware they so desperately needed for timesharing (the infamous "DAT box" that
would form the virtual storage features of the System/370 machines later), and this was a major blow to the project.

Nonetheless, they would eventually have their wish and get a DAT box (which they called a "Blaauw Box" after
Gerrit Blaauw, its designer); sadly, even after all of this, IBM would end up losing the Project MAC contract (they
also lost important connections with Bell Labs, who famously became a GE customer thanks to their partnership
with MIT and the development of Multics). The MIT guys, armed with their successful fulfilled proposal of what
was the first System/360 Model 67 (with that direly-needed Blaauw Box) -- this machine would be destined to run
TSS/360... but the keen reader will know the blazing failure that this OS was.

Part of the reason IBM never included timesharing as one of the original goals of the System/360 project was
simply because of the target market: the System/360 was intended to be a business batch processing machine, and
not an interactive timesharing scientific/academic machine. In that era, there were some hot criticisms of virtual
memory systems that most people have forgotten: the first machine to have virtual memory paging was the Ferranti
Atlas (which was one of the first supercomputers, and was located in the UK). Many people remarked that the
virtual memory features on the Atlas didn't work (or worked very poorly), and nobody understood why; the engi-
neers would later attribute it to the machine having a rather low amount of real memory, and the memory-
consuming loads were making the system thrash heavily.

While IBM was originally devastated by the loss of the Project MAC contract, the Lincoln Laboratory eventually
did get their aforementioned System/360 Model 67. IBM also got their ducks in the row and followed GE's lead:
they began to take timesharing seriously, rather than trying to "get rid of" the scientific/academic demands of the
universities with customized PRPQ-type operating systems (like RAX).

However, the shipment of the Model 67 got pushed back further and further, and the engineers began to get impa-
tient. A System/360 Model 40 was available to the engineers, and they quickly got to work designing some hard-

78 Mainframe History

ware upgrades and microcode updates that would implement a reduced-function implementation of the DAT Box on
the 360/40. In 1965, they got to work.

CP-40: In the middle of 1965, the engineers could finally start their work on CP-40's virtual machine control
program. They had already been dismayed with TSS/360 and essentially began to ignore it; they noted that TSS/360
was comprised primarily of lofty goals and forgotten hopes. Meanwhile, CP-40 and CMS were coming along
nicely!

First, CMS was written. The so-called Cambridge Monitor System would function as a single-user single-tasking
interactive OS that would run on the 360/40 without the need for the virtual memory features. When they were
ready to try to run several CMS sessions, they hardcoded a variety of virtual machines into the CP-40 nucleus and
regenerated it. Growing on the lessons learned from the M44/44X project (the first machine that actually imple-
mented virtual machines, on a modified IBM 7044), the so-called pseudomachines (of which there were 14) with
256K of storage quickly sprang to life. The virtual CMS disks were presented to the user's VM by divvying up the
computer's real disk storage into a variety of extents (called "minidisks"), unit-record devices (printers, punches, and
card readers) were emulated using a spooling technique (still used today by z/VM), and the typewriter terminals
provided CP console functions that would allow the user to start or stop their VM, manage devices within it.

CMS: On the heels of CP-40's development (technically before), CMS was finding itself maturing. The engineers
that implemented the original CMS used a variety of System/360s around the Boston/Cambridge area (including the
famous modified 360-40 while it was still on the factory floor in Poughkeepsie). The OS of choice that was used
for CMS's development was none other than BPS/360 (if you could even call that an "operating system" in the
traditional sense). To load the early versions, they used BPS's three-card loader; this was placed before the CMS
nucleus in the deck and the machine was IPLed from the reader.

Eventually, CMS was becoming mature enough that the programmers could use CMS to develop CMS (the OS was
then said to be "self-hosting™); when CP-40 matured enough to be able to run multiple copies of CMS, the pro-
grammers quickly jumped at the opportunity to do so and timesharing CP/CMS was born.

CP-67: Eventually, in September 1966, the engineers working on CP-40 at the Cambridge Scientific Center real-
ized that they would be able to migrate CP-40 to the System/360 Model 67 they had finally gotten. However, the
migration was not so smooth: the engineers ended up rewriting a substantial amount of CP to be not only more
flexible, but also more performant. Exciting new features included:

e Dynamically-allocated control blocks
e Variable number of virtual machines
e Larger guest virtual storage

e Most CP modules made reentrant

As CP-67 development rolled on, the engineers at the MIT Lincoln Lab started to become extremely frustrated with
the lack of quality of TSS/360; they looked at CP-67, saw that it was not only passingly similar to the old CTSS,
but was actually stable and usable (a tall order for TSS in its era, which often did not stay alive for long and
required constant re-IPLs). Seeing this, the Lincoln Lab computing crew started asking IBM for a tape of this
"miracle” software product. Keep in mind, IBM was heavily invested in TSS, and a major customer like the MIT
Lincoln Lab ditching TSS would be a major blow to IBM.

Indeed, it was, and the Lincoln Lab put CP-67 into production in April 1967. Both Lincoln and Cambridge worked
hand-in-hand on CP-67 by then, and other customers started to join the CP-67 fray. One of the most influential ones
was Union Carbide: they had been considering running TSS, but its massive lack of quality led them to seek a
suitable alternative. TSO on OS/360 had not yet matured in any releasable capacity, so they chose to run CP-67.
Because CP-67 was still very much so an academic software project, they sent some of their computer staff to
Cambridge to work on CP-67; they were directly shaping the future of the software they were running, something
IBM was strangely scared of engaging in with TSS.

CPICMS, VMICMS, and ZVM 79

TSS was not completely dead in the water, however. Melinda Varian remarked at SHARE 30 (in February 1968)
that there were at least 18 sites with System/360 Model 67s trying to run TSS, but none of them were satisfied with
the results. During SHARE 30, IBM famously announced that they would be de-committing from TSS (this was
essentially the final nail in the coffin for TSS, which had nearly no sites running it as CP-67 was gaining massive
popularity over it).

CP/ICMS: In May 1968, CP-67 had matured enough that IBM was ready to start providing it to installations in a
meaningful capacity. IBM released it in the so-called Type Il Library (i.e. a collection of user-written source code
libraries) the next month in June. Within 2 months, two timesharing companies were founded to sell CP/CMS
timesharing (those being Computer Software Systems -- later renamed to National CSS -- and Interactive Data
Corporation, eventually renamed to ICE Data Services) -- these companies poached a variety of key CP/CMS engi-
neers from Cambridge, Lincoln, and the existing CP/CMS cites, but these companies' efforts provided a major
publicity boost to CP/CMS, virtual machines, and the cumbersome engineering project that was the System/360
Model 67.

By April 1969, there were at least 15 360/67 sites that were running CP/CMS. In June of the following year,
Version 2 was done; Version 3.1 (released later in November 1971) could run up to 60 CMS users, stably, with
minimum downtime. By the first quarter of 1972, there were at least 44 sites running CP/CMS; Version 3.2 was
released around that time as a maintenance release... by then, a quarter of those 44 CP/CMS sites were within IBM.
At this point, TSS was essentially dead.

In May 1970, on the heels of the System/370 announcement, the CP/CMS programmers and architects sought to
upgrade CP/CMS to run on the new System/370 processors (though with caveats; see the section in the System/370
hardware history at the start of this book on the controversy surrounding the availability of the DAT box on the
launch models of the 370). To achieve this, the CP/CMS programmers actually emulated a S/370 on a S/360-67;
this emulation technique had already been employed during the S/360-40 to S/360-67 transition, and it would be
pivotal for future generations of the IBM System/370 descendants.

This emulation technique proved to be a major boom for what would become CP/370's popularity; the OS/VS
programmers had no real S/370s to try their OS on, and being able to emulate the machine they were targeting
meant they no longer had to "fly blind" with development -- this was further helped by a lack of prototype working
S/370s during the OS/VS development cycle. IBM had been trying desperately to get rid of CP/CMS, but they had
completely failed at this point: the CP-370 developers actually won an IBM award for their efforts| Eventually, with
the S/370 Advanced Function announcement, CP/CMS was officially discontinued.

VM/370

After CP/CMS's discontinuation, IBM unveiled the S/370 AF systems that came with stock virtual memory manage-
ment hardware -- because of this, IBM announced four new OSes:

e 0OS/VS1
* OS/VS2
e DOS/VS
* VM/370

The new VM/370 was a reimplementation of CP/CMS's control program, which certainly benefitted from the
"second time run-through™ design improvement principle. 110 people within IBM were now officially working on
VM/370. It goes without saying that the development of VM/370 was certainly rather cumbersome. For one, there
was the aforementioned massive shortage of prototype System/370s; the result of this was that CP-370 had to be
developed under CP-67 emulating a 370. This was necessary because the virtual memory relocation hardware on
the 370 was different than the 360: the 370 allowed for two different page sizes (2K and 4K), plus two segment
sizes (64K and 1M) -- the 360 only supported 4K pages with 1M segments.

80 Mainframe History

CP-67 was modified to emulate the 64K segments and to trap/emulate the 370-specific instructions. This modified
CP-67 was actually ran as a guest of the production CP-67 first-level system at Cambridge; in order to evaluate the
functionality of CP-67's emulation of a 370, CP-370 was ran under that modified CP-67 second-level system. Next,
the 370 CMS could be ran under that third-level CP-370 as fourth-level virtual machines; CP-370 could also be ran
fourth-level with the 370 CMSes running at the fifth level to ensure CP-370 could run itself under itself.

In January 1971, a prototype System/370-145 (one of the few that had a DAT box, which was distinctly different in
design from the earlier 360/37 one) was made available to the programmers at Endicott. They travelled up there to
test it, and the CP-370 prototype worked on the first try! The Cambridge people finally got a non-prototype
370-145 with a DAT box in the fall of 1971 amidst security precautions: there was quite a bit of concern in the
center that the people who worked in the adjacent buildings would notice that the 370 being delivered to Cambridge
had a DAT box, and this would go against what IBM had told its customers. In February 1972, the first fully-
working VM/370 CP nucleus was IPLed; this resulted in a very high development velocity moving forward into
July 1972, wherein an internal-use-only distribution of VM/370 was finished on the 5th of the month.

This was on the head of System/370 AF announcement (which would come on the 2nd of August, 1972); all of the
new 370s would have DAT hardware and such, plus the aforementioned operating systems earlier in this section
were announced. Note that VM/370 was up and running in the IBM Field Support Centers the day the 370 AF
announcement hit (unlike OS/VS2, which was still far off from being finished).

In order to have a "sane" reference platform, a 370-145 with 512K of storage was the target for VM/370 Release 1.
Note that when Release 1 was available, the largest machine that you could buy was a 370-168 with 8M of storage;
the VM/370 marketing team assumed that only about 1 customer would be running VM/370 on a 370-168, but the
first one sold and delivered was destined to only run VM/370 timesharing. A decade after this announcement, about
10% of the high-end machines built in Poughkeepsie would have VM installed; 15 years later, VM would outpace
MVS in terms of number of licenses sold.

The VM developers at IBM were notorious for producing an unbelievable amount of code per each programmer;
each programmer produced well over a thousand lines of assembler code for VM per month. The best part is the
VM programmers were actually having fun! There is an interesting anecdote documented in VM and the VM Com-
munity wherein one of the systems assurance testers was tested with a challenge consisting of a bunch of junk code:
these things would do things like wish the developers happy birthday if the system had been IPLed on their
birthday, but other things (like something that printed "BONG BONG BONG BONG" on every terminal at mid-
night) were left in surprsingly long. The man who did that testing, Dick Newson, remarks that his team wanted to
modify the VM DIAL command (enterable on the login screen/prompt) to say "Aren't you glad you use DIAL?" but
this fell through due to nonexistent legal threats they were scared of (DIAL is a brand of soap sold in America).

VM/370 Update Process: By the time Release 1 had solidified, most of the development on VM was happening
within IBM (which included the Cambridge Scientific Center). Starting in January 1973, the development crew was
moved to Burlington (adjacent to Boston). Once they were there, they began to provide service tapes for VM
Release 1. These so-called Program Level Change (or PLC) tapes contained more and more features that would
stack on top of the base. Release 1 PLC 09 added the CMSBATCH service machine mechanism (which still lives
on in z/\VM), the ability to spool a console to a file for further review or printing, support for the aforementioned
370-168, support for the 2305 paging drum memory unit, a rewritten scheduler that would replace the basic sched-
uler (this was called the "biased scheduler™), among other things.

VM/370 Release 2 and Growth: When Release 2 came out, VM was already growing somewhat rapidly (in
April 1974). The old typewriter terminals were starting to be replaced by a relatively new (and now famous) periph-
eral: the 3270 series terminals. There is an anecdote wherein Dick Newson walked around MIT and observed the
users of early CRT monitors; he noticed that the scrolling was too extreme and came up with the screen hold
feature.

CPICMS, VMICMS, and zZVvM 81

VM/370 ONLINE

Vv Vv MM MM
Vv Vv MMM MMM
vV vV MMMM MMMM
Vv Vv MM MM MM MM

3333333333 777777777777MMMM 00000000
333333333333 77777777777 MM 0000000000

33 VV33 77VV 77 0OMM 00

V33 Vv 77M 0OMM 00

33) 77MM 0OMM 00

3333VV VY 77 MM 0OMM 00

3333 Vvvv 77 MM 0OMM 00

33 W 77 MM 0OMM 00

33 77 00 00

33 33 77 00 00
333333333333 77 0000000000
3333333333 77 00000000

RUNNING

Figure 20. VM/370 Release 4 login screen

PLC 05 (on Release 2) gained support for the new 3705 communications processor, which necessitated the creation
of commands to load and IPL the communications processor (as it was a computer of its own). The 3705 generally
replaced the earlier 2703, and provided all manner of telecommunications line capability. To grow on this new
support, PLC 11 January 1975) added a now famous subsystem to VM: RSCS (see the notes on this below). In
March 1975 (with PLC 13), OS/VS1-CP paging handshaking was added as well as the CP monitor system (which
was necessary for future programs like VM/RTM). PLC 23 (February 1976) added IPCS (indispensable for debug-
ging), and VM/370 Release 3 was released shortly after.

Release 3 added both support for 3350 DASD and also VMCF (which allowed VMs to intercommunicate, and
would later live on as IUCV, aka APPC/VM).

CPREMOTE, RSCS, and VNET: Around the time Release 3 was gaining an install base, various IBMers sought
a native inter-VM network system that could allow for file sharing between systems. This had already somewhat
been written starting in 1969 by two Cambridge people in a package known as CPREMOTE -- this was essentially
the first example of what we would now call a service virtual machine (which lives on today, just check out any
zZIVM system). This program provided a communications method in which two CP-67 machines shared a common
spool interface. Since it was distributed alongside CP-67, many places within IBM adopted it quickly, but its
shortcomings were obvious. Alas, a fork of it was produced (called CP2780) that controlled terminals for RJE
(Remote Job Entry, a common feature found on mainframes at the time; a 2780 was an RJE workstation).

CPREMOTE was certainly rather popular, but it ended up falling into a situation where it needed to be replaced,
badly. This manifested in 1971, wherein the CPREMOTE authors decided it was time to start over, and try to
combine the features of CPREMOTE and CP2780. The resultant program from this effort was called RSCS, or the
Remote Spooling and Communication Service. The original RSCS was released, as mentioned, in 1975; it was,
however, mostly incomplete. This bothered the authors, who had literally left in dummy function calls to functions
that would facilitate remote communication over a protocol that would eventually become known as NJE (Network
Job Entry). To alleviate this, a modified RSCS was produced (which was a PRPQ) called VNET. Now that it was

82 Mainframe History

available, VM/370 sites quickly repurposed some spare BSC lines on their 2703s and 3705s to form a network: this
happened within IBM naturally, but was initially hampered.

Initially, VNET used asynchronous modems. This meant that an operator in the computer room had to physically
dial a phone number on a telephone, place the phone receiver into the modem acoustic coupler, then start VNET
processing on both sides. Since VNET was mostly used within IBM, someone had a clever idea: IBM had tons of
leased lines between sites, and some of them were unused. The VNET users, realizing this, quickly found unused
phone lines that ran from one site (or building) to another, attach it to a synchronous modem, and start the network
links.

The first multi-site network was, as documented in VM and the VM Community, was called Sun (or the Subsystem
Unified Network, no relation to the Stanford University Network of UNIX fame). Apparently, this was two disjoint
networks that were bridged together by a phone cable ran across a parking lot at a California IBM site. The pro-
tocol spoken over the line used a modified RSCS (which itself would find its code merged into mainline RSCS,
made available as the NJI line driver). An engineer reverse-engineered HASP/JES2's NJI line driver protocol (as it
allowed for critical things like routing between/through multiple nodes), which at that point was completely undocu-
mented. When the two sides negotiated the link, the engineer (Tim Hartmann) ran a banner-printing program on a
machine located in Poughkeepsie and had the output print on a printer attached to a machine in San Jose... which
was quickly noticed by the author of the HASP/JES2 NJI line driver code (Ken Field). Upon naticing this, Field
requested several more copies and taped them on the walls all over the building. The message? Machines of the
world unite! Rise to the SUN!

By Feburary 1976, there were 50 systems connected to the burgeoning VNET network (as it had come to be known
by that point). By March 1979, there were at least 239 systems spanning 11 different countries. Because VNET
grew so quickly, essentially every VMer at IBM was networked in some form or fashion. Due to this, someone
named Peter Capek hada a bright idea: Make a VM Newsdletter, for VM, on VM, sent through VM!

The newsletter was replaced in 1983 by a more purpose-built conferencing system called IBMVM, managed by a
program called TOOLSRUN. IBMVM was a “conference” comprised of many files (which for some reason are
called "fora", hence TOOLS-adjacent support programs with FORA in their name). The conference disk was mir-
rored on systems attached to the network, and this information-sharing scheme produced massive gains in produc-
tivity for the IBMers (as TOOLS conferences were starting to be used by everyone, not just VMers).

Of course, IBM's dependence on a network meant it would not be long before someone would try to exploit said
dependence for either humorous or malicious means. This came in the form of an interesting script that hit in
December 1987. The so-called CHRISTMA EXEC made its way to VNET through BITNET, which itself was
attached to the European college NJE network named EARN.

VM/370 BSEPP and SEPP

The road to a VM/370 program product was long and arduous. In 1976, IBM forked VM/370 Release 3 PLC 06 to
emulate 370/XA VMs on a standard System/370. All the while, IBM was hot on the trail of VM/370 Release 5 in
1977 (which introduced VMAP as an optional program product). There were also made available two system-
extension versions of Release 5:

e VM/370 BSEPP (Basic System Extensions Program Product), which introduced support for FBA DASDs,
EDGAR (sometimes called the Display Editing System, the first real fullscreen 3270 editor), and CP improve-
ments.

e VM/370 SEPP (System Extensions Program Product) introduced the Wheeler Scheduler (offering greatly
improved CP dispatch performance), a variety of user modifications people had written (many of which were
sourced from the Waterloo VM Library), the ability to send VM accounting records to disk, swap table
migration, page migration, and shadow table maintenance enhancements (the last three are copied verbatim
from VM and the VM Community).

CPICMS, VMICMS, and ZZVM 83

Much of the "controversy" around VM/370 in the 1970s (the so-called Doubtful Decade (as it was named in a
SHARE presentation given in 1978) revolved around a series of questionable release choices that resulted in rather
bad user satisfaction during that era. Initially, users were actually rather disappointed when the original VM/370
release was made available; Release 3 was another low point, but users began to like VM/370 quite a bit (i.e. were
impressed with its stability) around Release 5.

VM/370 Release 6 and BSEPP/SEPP Release 2: In 1979, VM/370 Release 6 hit the market. Users quickly
installed it, and it was often noted to be one of the most stable versions of pre-VM/SP VM made. Release 2 of
BSEPP and SEPP introduced a feature that became critical for networking later: logical device support; this release
also revamped the CMS filesystem with its new version: EDF (Extended Disk Filesystem). The new version of
RSCS, the Program Product version, was also released on the same day; it totally overhauled line driver support and
combined all of the modifications made to RSCS over the years. Though it was lacking, a CMS HELP facility was
also introduced; the version found in this release was nothing more than a text file displayer and was a far cry from
the panel-and-menu-based HELP system seen on z/VM today.

BSEPP and SEPP were essentially stopgap releases, and were essentially warm-up measures for a truly program-
product version of VM. This would come shortly after in the form of:

VM/SP

In late 1980, VM/System Product Release 1 hit the market. Gone were the days of having the complete source code
to VM; most of VM/SP was now copyright IBM and written in a language people did not have compilers for (PL/S
and later PL/X). Alas, new features were added:

e EXEC 2, a new CMS scripting language

e |UCV, the evolution of VMCF

e A MIH (missing interrupt handler) for device reliability
e Multiprocessor system support

e Subsystem communications

o XEDIT, Xavier's vastly improved EDITor

Though about 100,000 new lines of code were thrown into the system, there had been a massive lack in testing.
Many people realized that VM/SP Release 1 was thrown out the door and onto the market well before it should
have been, and it was obvious! CMS would randomly corrupt minidisks, CP would randomly crash, and IBM
revamped the PUT process that made it even harder and slower to get fixes shipped to customers. VM/SP took all
of the improvements of VM/(B)SEPP and slammed them into a bunch of new code; it was a mad sight to behold.

It seems that IBM did not learn from their mistakes with OS/360, and, as mentioned, they threw tons of program-
mers at VM/SP R1's development crew. Since none of these people were VM experts (or even passingly good from
historical reports), the fixes that this crew did produce were of terrible quality.

One of the more questionable things added to VM/SP R1 was something called VTAM -- the VTAM Communi-
cations Network Application. This was a primitive implementation of SNA for VM, and it functioned by having a
dedicated MV'S guest system that communicated with CP via VMCF. Needless to say, this was not a good solution;
many VM systems programmers quickly became fed up with VCNA as it required them to learn MVS, learn
SMP/E, figure out MVS JCL, and other such things foreign to them. It would be a while before true SNA net-
working came to VM with ACF/VTAM V3 on VM/SP Release 4.

PROFS: In late 1981, IBM made available a program that would end up becoming absolutely famous: the Profes-

sional Office System, or PROFS. IBM had worked with a company named AMOCO (a federal credit union in the
United States) to develop PROFS, and IBM released it as a PRPQ. This PRPQ version was a massive success, and

84 Mainframe History

IBM released it later as a fully supported program product in the mid-80s. IBM became somewhat dependent on
PROFS, and, by 1987, there were a million PROFS users outside IBM. There is an expression that the PROFS main
menu welcome screen was the most displayed thing on any CRT terminal from any manufacturer, but this may just
be a clever marketing ploy by someone steeped in cleverness.

PROFS MAIN MENU A0O
Press one of the following PF keys.
PF1 Process calendars Time: 3:21 PM
PF2 Open the mail
PF3 Find documents 2025 SEPTEMBER 2025
PF4 Process notes and messages S M T W T F S
PF5 Prepare documents 1 2 3 4 5
PF6 Process documents from other sources 6 7 8 9 10 11 12
PF7 Process the mail log 13 14 15 16 17 18 19
PF8 Check the outgoing mail 20 21 22 23 24 25 26
27 28 29 30

PF10 Add an automatic reminder Day of Year: 254
PF11 View main menu number 2

5664-309 (C) Copyright IBM Corp. 1983, 1987 PF9 Help PF12 End

Mail Waiting
Figure 21. PROFS V2 R1.1 Main Menu

VM/SP R2 and R3: As the 1980s rolled on, IBM decided it was high time to ditch their heavily patched SP 1
system (the one in Poughkeepsie is the VM system in question), and the results were staggering. Now that the
VMers had a taste of their own medicine, they had a change of heart; SP Release 2 contained a massive number of
fixes that SP 1 should have had, ranging to a whole host of bugfixes to a command retrieve key. One of the
interesting things added were the Productivity Tools, the now-familiar FILELIST, RDRLIST, and other such menu-
driven things.

VM/SP Release 3 added REXX, and it quickly filled a void of the poor EXEC 1 and EXEC 2 programming envi-
ronment. Mike Colishaw had been working dutifully on REXX, trying hard to get it into VM; some people saw it
as BASIC, but many saw it as the true potential-bringer it was. Not before too long, the entire system was using
REXX everywhere.

VM/Passthrough: Going by several names, one of which was PVM, was an interesting cross-system networking
product for VM made in the late 70s. PVM emerged as a program named V6 in 1974. Its slated purpose was to
allow remote access to the IBM RETAIN (a database system that service personell can use to catalog problems and
note solutions) system in Raleigh. By 1980, VM/Passthrough was launched as a real product.

Strangely enough, when PVM was made available as a product, it had already had years of battle-testing; it was so
well-used within IBM that it was launched with essentially no bugs. PVM started to evolve quickly, and began to
gain many new link types. By its final release (2.1.1, 1998), it had support for a wide variety of links:

e CTCA

e Bisync

CPICMS, VMICMS, and zZVM 85

APPC/VM
TCP/IP

3274 emulation

IUCV (local system only)

VM/Pass-Through Facility

You can select a node with the cursor and press ENTER

L VMESA N ZVMA N ZVMB N ZVMC N VMHPO N VMSP

N ZVMD N VMESA370 N ZVME N VMESA21 N VMESA12 N VMHP042

N VMIS N VMESAG N VSEESA N VISIONS N EVIEVM N EVIEVSE

N EVIEVMG
Destination ------=----ccu- > Port -----mmmmm e >
Route ----------mmmmmmm - > Language ---------=------—--- > AMENG
End Session -----—--—meemoon > #### Verify —--—-c-mmmmmeeeee - > OFF
Your Identification --------- > GRAF020 Nickname -------—-—--—————-—- >
Session RoO1T -------—-ccc- > ?SELECT Menu Select ---------------—- > ?MENU
PF8= Scroll CLEAR key = Top Screen PAl= Exit
*kkk> <k*k*k*
*kkk> <kk*k*

Figure 22. VM/Passthrough menu

VM/SP HPO: March 27, 1982 introduced a new version of VM: the VM/SP High Performance Option. The first
version was Release 2 (for VM/SP Release 2). Later versions, namely HPO Release 3.2 and 3.4, were massive
performance booms. One touted feature was an increase in how much storage could be used; Release 3 added
support for the Extended Real Addressing scheme described in the hardware section, allowing for 64 MB of real
storage to be used on the system. Other features included:

e Improved storage management and simplified tuning

Users can create up to 9900 spool files, rather than having the entire system limited to 9900 files

e Scheduler enhancements, mainly with regards to storage over-commitment

e Expanded storage can now be used for paging, allowing for relatively fast access to more than 64 MB of real

storage

e Extended hardware support (4381s, 3090s)

e Sped-up TSAF (will be discussed later)

There were many VM/SP HPO releases, here they are:

e R2M5
e R4MO
e R4M2

86 Mainframe History

e R5MO
* R6MO

VM/XA MA: 1 shall discuss in more detail later the details of VM/XA SP (which came later), but the VM/XA
Migration Aid was a primitive 31-bit XA-mode version of VM derived from The Tool (as it was known); it was the
program product version of the forked VM/370 CP that could create XA VMs but modified to run XA VMs on an
XA host. Just like the first run of CP-370, VM/XA MA IPLed first try on a prototype 3081 when it became
available. The Migration Aid was intended as a tool to help users migrate from OS/VS1 and OS/VS2 to the new
MVS/XA, while running their "old" 370-mode OS/VS images as they moved.

The OCO Announcement: February 8, 1983 was a sad day for VMers. During the runtime of SP 2 and SP 3,
IBM announced (as mentioned earlier) that the complete source would no longer come with the product. It was
now Object Code Only! VM customers fought tooth and nail against this, even going as far as the time when
SHARE published a white paper; IBM never responded to it. There was a particular good example of the OCO
policy gone wrong with:

VM/PC: If you read the section earlier on the XT/370, you will recall that the XT/370 was provided with a
version of VM called VM/PC. This was the first real OCO version of VM, and it was a colossal failure. Many
features were implemented incorrectly (or not implemented at all), and the customers of it were powerless to correct
these issues without the source and associated compilers! As such, VM/PC was dead as soon as it was released.

VM/SP Release 4: Late in 1985, IBM released SP 4. People adopted it, but... it was clear IBM had not learnt
their lesson. SP 4 had just as many bugs as earlier versions, but some new features were actually derided for being
bad replacements to earlier features or were of poor implementation quality. The major feature that was added was
CMS HELP (as mentioned earlier): sure, it was now a menu-driven system, but the help menu pages were essen-
tially copy-paste versions of the hardcopy manuals made to be read on CMS.

VM/370 ONLINE--PRESS ENTER OR CLEAR KEY TO BEGIN SESSION

vV vV MM MM
Vv Vv MMM MMM
Vv Vv MMMM MMMM
vV Vv MM MM MM MM

3333333333 777777777777MMMM 00000000
333333333333 77777777777 MM 0000000000

33 VV33 77VV 77 0OMM 00

V33 Vv 77M 0OMM 00

33) 77MM 0OMM 00

3333V WV 77 MM 0OMM 00

3333 VWV 77 MM 0OMM 00

33 W 77 MM 0OMM 00

33 77 00 00

33 33 77 00 00
333333333333 77 0000000000
3333333333 77 00000000

RUNNING VMSP4
Figure 23. VM/SP Release 4 logon screen

CPICMS, VMICMS, and zVM 87

SP 4 also introduced GCS, the Group Control System. Its slated purpose was to run a true real port of VTAM on
VM, but customers derided it too for being a closed system with no source. Alas, the new VTAM V3 port to VM
was reasonably well-received otherwise. GCS, however, almost completely stagnated; with no source and little doc-
umentation, only IBM provided programs that ran under it. For reference, GCS provided a simplified implementa-
tion of a MVS scheduler, some supervisor calls, and console emulation that allowed for porting MVS programs
over to VM; one would think that many customers would move off of MVS and onto VM because of this (since
GCS could, in theory, run applications either in one VM or in several VMs), but nobody did. When it was all said
and done, there were only a few products that used it: VTAM, RSCS, NetView, and not much else.

CMS gained a new feature that almost nobody wanted: CMS Windows(properly called CMS Session Services). It
was a cool novelty, but many people asked what's the point? Release 4 also added multiple language support, but it
was cumbersome to use, difficult to implement new languages for, and very awkward. Users that found themselves
as large RSCS routing nodes found their performance degraded, and it wouldn't get any better with Release 5.

WISCNET and VM TCP/IP: In the early 80s, people at the University of Wisconsin had a bright idea: what if
we produced a TCP/IP stack for VM? The result of this was a project called WISCNET, which provided the afore-
mentioned Internet support for VM. This project was of particular interest because IBM worked with the university;
in the age of OCO software coming out of IBM, a product that came with its source was a breath of fresh air.

By 1984, IBM was selling WISCNET as a PRPQ); this was later adopted by a team within IBM as a true program
product. The result of that effort was the famous "FAL", so named after its program number (5798-FAL). While
some people saw it as a Pascal monster, others saw it as a solid product. WISCNET (and later VM TCP/IP) both
contained code to build NJE-to-Internet mail gateways. For sites that had both WISCNET and VM TCP/IP tapes
installed, they would find themselves possessing a variety of interesting programs:

e A TN3270 program for UNIX
e X Windows for VM (later)
e Both Pascal and C API support, including support for the standard BSD socket APl on CMS

WISCNET's software requirements were rather slim, only requiring VMCF support for the intercommunication
between the TCP/IP stack virtual machine and server/client VMs. As for the hardware side, things were much more
complicated. In the "modern era” of System/390s, mainframes possess "open systems adapter” cards (as discussed in
more detail in the earlier hardware sections). These OSAs emulate something called an IBM LAN Channel Station,
essentially a DOS PC fitted with at least two cards: a bus-and-tag channel card, and at least one Token Ring or
Ethernet card. A program would run on that DOS machine that provided the service of what became to be known
as a "LAN Channel Station." The 8232 LCS became available during the time IBM was selling VM TCP/IP, so
things were much different in the era of WISCNET.

If you wished to attach your WISCNET install to an Ethernet network, you needed a box called a DACU (device
access control unit). This box contained a shortened DD11-CK UNIBUS backplane that held a bus-and-tag card and
an Interlan Np100 10 megabit Ethernet UNIBUS board. There was an IBM PC that ran the control software; this
device was the direct inspiration for the later 3172 LCS.

During the time of WISCNET, there were some other competing solutions: one of which was Spartacus TCP/IP for
VM, originally written by people that had written a TCP/IP stack for MVS called KNET. Much like WISCNET and
the DACU, KNET and Spartacus used a similar box to provide an Ethernet port on the mainframe (theirs was
called the K200). Of course, WISCNET had IBM's backing and ended up winning out; the DACU was transformed
into the 8232 LCS, and the LCS also gained support for SNA over Ethernet and Token Ring (though it provided a
slightly different operating mode to do this). When the P/370, P/390, 1S3006, and MP3000 became available, the
system provided device emulators that emulated both the Ethernet and SNA operating modes of an 8232 LCS. For
more information on the 8232, see the earlier section in this document that describes it!

88 Mainframe History

SQL/Data System: In an era of uncertain futures of databases, IBM produced System R -- the first SQL data-
base. While it ran on MVS and was barely popular, an offshoot of it became a massively popular product in the
1980s. This product was SQL/DS, and it ran on VM and VSE; MVS customers got Db2 (which was also SQL).
SQL/DS and the VM Shared File System actually are both derivatives of System R! If you've used unixODBC or
Microsoft SQL Server, you may have noticed a program named something like ISQL. Believe it or not, this is
actually derived from SQL/DS, which provided commands just like that that did the same thing (that is, provide
Interactive SQL where you can run SQL statements directly).

isql
ARI06591 Line-edit symbols reset:
LINEND=# LINEDEL=0FF CHARDEL=0FF
ESCAPE=0FF TABCHAR=0OFF
ARIO320I The default server name is SQLDBA.
ARI77161 User WEC connected to server SQLDBA.
ARI7399I The ISQL default profile values are in effect.
ARI70791 ISQL initialization complete.
ARI7080A Please enter an ISQL command or an SQL statement.
select * from wec.testtab
ARI7960I The query cost estimate for this SELECT statement is 1.
CoLl cCoL2 coLs3

1 HI 2

* End of Result #** 1 Rows Displayed ***Cost Estimate is Lakskkksdhrskrkkrkkkskk
exit
ARI76011 ISQL ended normally on your request.
ARI0660I Line-edit symbols restored:

LINEND=# LINEDEL=¢ CHARDEL=@

ESCAPE=" TABCHAR=*
Ready; T7=0.03/0.04 16:43:13

RUNNING EVIEVM
Figure 24. SQL/DS on VM ISQL

Eventually, by the 1990s, SQL/DS was renamed to Db2 for VM and Db2 for VSE; they have little to no relation to
Db2 for MVS or Db2 LUW ("Linux Unix Windows", which also ran on 0S/2).

VM/SP Release 5 and 6: SP 5 was intended to add more features to SP 4, and several key bugfixes were
included. Released in December 1986, it still contained many new derided features. While later versions of SP 5
were remarkably stable, the criticism of SP 5 pales in comparison to SP 6. Hitting the market on October 20, 1987,
SP 6 introduced TSAF, a shared CMS filesystem, and a very unstable version of CMS. The new CMS SFS was
certainly a great idea: you could now have directories... but if the SFS server VMs crashed, your data was as good
as dead (this has happened to your author's VM systems)! TSAF was a cool feature as it allowed for speedy cross-
system collections of a singular APPC/VM domain to be created, but it was not truly useful until the final releases
of VM/ESA a decade later. CMS SP 5 and 6 were also quite derided: Cornell famously never put CMS SP 5 into
production on account of major bugs; most sites stayed with CMS SP 4. Sadly, some customers tried to move to
VM/XA SP, but it always ended in a disaster; VM/XA SP, while it had been made available, had hardly any
features (and the ones it did have were either of sub-par quality in their implementation, or just missing altogether).
VM/SP 6 did add VMSES/E, which made service much easier, but many diehard VM systems programmers derided
it for various reasons.

CPICMS, VMICMS, and zZZVM 89

VIRTUAL MACHINE/SYSTEM PRODUCT

Vv Vv MM MM //

Vv VvV MMM MMM //

Vv vV MMMM MMMM //
Wwooow MM MM MM MM // SSSSSSSS PPPPPPPP
VvV vV MM MMM MM // SS SS PP PP

VvV MM M MM // SS PP PP
v MM MM // SSSSSSS PPPPPPPP
/1 SS PP
/! SS SS PP
/1 SSSSSSSS PP

Fi11 in your USERID and PASSWORD and press ENTER
(Your password will not appear when you type it)

USERID ===>
PASSWORD ===>
COMMAND = ===>

RUNNING ~ VMSP5
Figure 25. VM/SP Release 5 logon screen
VM/IS: Originally intended to be a turnkey package of VM/SP Release 5 or 6 and installed on an IBM 9370,
VM/Integrated System was the "sysprogless VM." This was intended to actually be a massive success, but, in true

IBM fashion in that era, it certainly wasn't. Instead, VM/IS was a bit of a flop; alas, it included the following
products:

e SQL/DS
e DisplayWrite/370
* PROFS

e QMF

e VS BASIC
e GDDM

e RSCS

e |SPF

e FORTRAN
e TCP/IP

e VTAM

Alas, VM/IS was certainly a wonderful system. See the following screencaps for some examples of what the system
could do:

90 Mainframe History

VIRTUAL MACHINE/SYSTEM PRODUCT

LR R R R R T R R S R R S R R R R T R R R R T R S R S R S S
*k*k *kkkkk *% * *kkkkkk * *k*k *kkk*k
*k*k *kkkkk * * * *kkkx *k*k *k*k ** *kkk
*kk*k *kk*k ** *k k% *kk*k *kk*k *kk*k kkkkkkk
*kkk*k *%* *k* *kkk*k *k* *kkk*k *kkkkk *kkkk
*kkkkk *kk*k *kkk*k ** *kkkkk *k*k ** *kk*k
*kkkkkk *kkk*k *kkk*k * kkkkk*k *k* *kkkk

hkkkhkkhkhkkhkhhhkhkkhkhhhkhkkhkhhhhkkhkhhhkhkkhkhhhkhkkhkhhkhkhkkkkkx

Virtual Machine / Integrated System

Fi11 in your USERID and PASSWORD and press ENTER
(Your password will not appear when you type it)

USERID ===>
PASSWORD ===>
COMMAND = ===>

RUNNING VMIS
Figure 26. VM/IS logon screen (system built on VM/SP Release 5)

IBM BASIC/VM VERSION 1 RELEASE 2.0 1925/09/21 16:14
(c) Copyright IBM Corporation 1982, 1985
* Toad eliza
255 LINE(S) LOADED. 'ELIZA' IS THE WORKSPACE NAME.
* run
HI! I'M ELIZA. WHAT'S YOUR PROBLEM?
? nothing much
ARE YOU SAYING NO JUST TO BE NEGATIVE?
? not really, I'm just being silly
YOU ARE BEING A BIT NEGATIVE.
? you are right...
SAY, DO YOU HAVE ANY PSYCHOLOGICAL PROBLEMS?
? probably?
WHAT DOES THAT SUGGEST TO YOU?
? that you are fun to talk to!
I SEE.
? thank you for helping me demonstrate VM/IS!
I'M NOT SURE I UNDERSTAND YOU FULLY.
? that's fine!
COME COME ELUCIDATE YOUR THOUGHTS.
? okie!

CAN YOU ELABORATE ON THAT?
?

Figure 27. The original BASIC ELIZA on VS BASIC for VM

CPICMS, VMICMS, and zZVvM 91

DWSAMPLE RFT Jl Page 1

Line 0
===>
S e e et T L B e e TR T ey ST
——— Page 1 ----
To: A1l Staff
From: Planning Office
Subject: Quarterly Business Meeting
Date: September 23, 1985
This year the Corporet Division has scheduled the Autumn Quarterly
Meeting for Friday, October 23, in Wolverhampton, U.K. So that we
might all prepare for this important meeting, the Planning Office
has compiled the following "mini-report" on one area considered
vital to the company's growth: international development . spell
ing
We hope the report will help prepare you for some of the major
PF 1=HELP 2=Insert 3=END 4=Instr. 5=RFind 6=Aid
PF 7=Backward 8=Forward 9=Block 10=Command 11=Next 12=Cmd1ine
Figure 28. DisplayWrite/370 for VM
---------------------- ISPF/PDF PRIMARY OPTION PANEL =------mmmmmmmomccceeeee
OPTION ===>
USERID - WEC
0 ISPF PARMS - Specify terminal and user parameters TIME - 21:20
1 BROWSE - Display source data or output listings TERMINAL - 3278
2 EDIT - Create or change source data PF KEYS - 12
3 UTILITIES - Perform utility functions
4 FOREGROUND - Invoke language processors in foreground
5 BATCH - Submit to batch for language processing
6 COMMAND - Enter CMS command or EXEC
7 DIALOG TEST - Perform dialog testing
8 LM UTILITIES- Perform library management utility functions
9 IBM PRODUCTS- Additional IBM program development products
C CHANGES - Display summary of changes for this release
T TUTORIAL - Display information about ISPF/PDF
X EXIT - Terminate using console, log, and list defaults

Enter END command to terminate ISPF.
5684-123 (C) COPYRIGHT IBM CORP 1980, 1990.

F1=HELP F2=SPLIT F3=END F4=RETURN F5=RFIND F6=RCHANGE
F7=UP F8=DOWN F9=SWAP F10=LEFT F11=RIGHT = F12=CURSOR

Figure 29. ISPF on VM/IS

92 Mainframe History

Licensed Materials - Property of IBM

5645-DB2 5648-A70 (C) Copyright IBM Corp. 1982, 1998

A11 Rights Reserved.

IBM is a registered trademark of International Business Machines

QMF HOME PANEL Query Management Facility
Version 6 Release 1
Hokokok ok ok *% *% Kekokokkkkk

Authorization ID *% I *% o
WEC *% *% *hkk kkkk K,k k ko kk

Kk Kk *k kk Kk Kk *% T
Connected to *% * k% B *% _
SQLDBA o *k kkk Kk ok _

**

Enter a command on the command Tine or press a function key.
For help, press the Help function key or enter the command HELP.

1=Help 2=List 3=End 4=Show 5=Chart 6=Query
7=Retrieve 8=Edit Table 9=Form 10=Proc 11=Profile 12=Report
0K, you may enter a command.

COMMAND ===>

Figure 30. QMF, a Ul for SQL/DS, on VM

VM/XA SP

As mentioned before, there were three different versions of "VM/XA" that were made available:

e VM/XA MA (Migration Aid): a stopgap measure to migrate MVS/SP systems to MVS/XA; announced 21
October 1981.

e VM/XA SF (System Facility): announced 12 February 1985, SF was an expanded version of the Migration Aid
that gained support for new things, like:

— Support for the 3090

— Support for the 3800 laser printer

— "Dedicated" support for the 3370 (FBA) and then-new 3380 (CKD) DASD

— A subset of support for VM/SP's IUCV (which would be necessary for TCP/IP later)
— Multiprocessor guest support

— Support for Named Saved Systems, in which saved systems are stored in spool files (as opposed to
hardcoded into DMKSNT at fixed locations)

— CMS 3.1 (from VM/SP Release 3), though somewhat buggy, and only for "installation and maintenance"

e VM/XA SP (System Product), of which there were two versions: a version of VM/XA intended to match the
functionality of VM/SP; announced 11 June 1987. Features included:

A bimodal CMS that supports 31-bit addressing modes
A port of VM/Real Time Monitor

National Language Support for CMS (a feature found in VM/SP)

Support for PROFS (which required a good and usable version of CMS)

CPICMS, VMICMS, and ZZVM 93

— Support for a port of RACF, providing better security over just DIRMAINT by itself

Most of the "meat and potatoes" of VM/XA came from VM/XA SP, wherein IBM was trying to supplant the usage
of VM/SP HPO on large machines (like the high-end 308x or 438x processors). Sadly, users found it to be rather
lacking in many ways! For one, users derided the bimodal CMS (which hit the scene in March 1988) for being
horribly unstable and lacking in support for a large amount of applications. Depending on the virtual machine's
mode, you would get either a 370-mode or XA-mode CMS. It works like this:

set machine 370

System reset.

System = 370

ipl cms

DMSACP7231 Y (19E) R/0

DMSINS3271 The multitasking saved segment VMMTLIB could not be loaded
VM/ESA REL. 2.2 01/21/23 10:22

DMSDCS3993E PIPES saved segment can not be loaded beyond 16M
DMSDCS3993E VMLIB saved segment can not be loaded beyond 16M
DMSWSP10OW Shared S-STAT not available

DASD 0222 LINKED R/0; R/W BY OPERATOR

DMSACP7231 C (222) R/0

Ready; 7=0.10/0.12 10:03:53

set machine xa

System reset.

System = XA

IPL CMS

DMSACP7231 Y (19E) R/0

VM/ESA REL. 2.2 01/21/23 10:22

DMSWSP10OW Shared S-STAT not available
DASD 0222 LINKED R/0; R/W BY OPERATOR
DMSACP7231I C (222) R/0

Ready; T7=0.05/0.06 10:04:53

Figure 31. PROFS V2 R1.1 Main Menu
Okay, | know this is a VM/ESA 1.2 system, but it is analogous to VM/XA Version 2.

VM/XA ultimately was somewhat of a flop; it never had the substantial amount of effort being poured into it in the
same way that VM/SP and VM/SP HPO had. VM/XA never had the same amount of supported features, users, or
documentation as its internal competition. One of the biggest issues with it was simply how different its CMS was;
some users of VM/XA SP actually built and ran old versions of CMS from VM/SP (like Release 3 or Release 4) on
VM/XA as 370-mode virtual machines. While this also meant that there was no way to take advantage of the
31-bit CMS/XA address space, one must also ask if any such applications ever even existed. For timesharing instal-
lations (like universities) running VM/XA, this solution was perfectly fine. Also, since VM/XA's CMS was so
riddled with OCO modules, any third-party programs that used CMS nucleus extensions (which large VM programs
did) would be useless on VM/XA. Ultimately, the major flop that was VM/XA led IBM to seek a suitable replace-
ment... and it came in the form of...

94 Mainframe History

VM/ESA

VM/ESA was seen as the grand unification of the VM/SP and VM/XA line. When VM/ESA was announced on
September 5, 1990, they had a tall order: replace VM/SP, VM/SPA HPO, and VM/XA SP. Now, note that VM/SP
and VM/XA were, in no uncertain term, two different systems; the VM/XA version of CP had diverged so much,
its module prefix was changed from DMK (for the 370 CP) to HCP. VM/ESA would have to encompass two
different types of processors: the System/370 machines (of which there were still certainly some operating in that
era) and the System/390 machines (with VM/ESA being the new premier version of VM that would run on those).
As such, there were several versions that would end up being announced:

¢ VM/ESA V1R1 370 Feature (September 28, 1990): the successor to VM/SP Release 6
e VM/ESA V1R1 ESA Feature (March 29, 1991): the successor to VM/XA SP Version 2
e VM/ESA V1R1.1 ESA Feature (December 27, 1991)

Parallel Worlds: The goals were clear: unify the flailing VM line, and make VM a system for the 1990s. Of
course, this too would be a tall order -- VM had, at that point, come off of a rather bad decade of questionable
decision after questionable decision, and this version would also introduce new features. One of those was VM Data
Spaces, which you may recall as being a new feature of MVS/ESA systems (if you are reading this paper in linear
order). VM Data Spaces were essentially the same thing, except a new virtual machine operating mode (to comple-
ment 370 mode, XA mode, and ESA mode) was added: XC mode. A certain DIAGNOSE function could be used
(X'248") to copy data to and from a Data Space into that VM's main address space. This would end up being a
useful feature for filepool servers. Alas, the 370 Feature wasn't totally ignored: all of the VM/SP HPO maodifica-
tions were added onto 370 Feature (the main ones being the 64 MB real storage limit and the spool file constraint
removal).

VIRTUAL MACHINE/ENTERPRISE SYSTEMS ARCHITECTURE

Vv VV MM MM //
vV VV MMM MMM //
VW VvV MMMM MMMM //
VW VWV MM MMM MM //
Vvy MM M MM // EEEEEEEE SSSSSSS A

v MM MM // EE SS SS AAA
/l EE SS AA AA
// EEEEE SSSSSS AA AA
// EE SS AAAAAAA
/! EE SS SS AA AA
/l EEEEEEEE SSSSSSS AA AA

Fill in your USERID and PASSWORD and press ENTER
(Your password will not appear when you type it)

USERID ===>
PASSWORD ===>
COMMAND ===>

RUNNING VMESA370
Figure 32. VM/ESA V1R1 370 Feature logon screen

Because there were now two concurrent versions of VM riding together at the same time, much effort had to be put

into preserving parity between the 370 Feature and the ESA Feature. One of those was the retroactive reintroduction
of a feature similar to VM/XA that would lower the amount of times the system programmer would have to gen-

CPICMS, VMICMS, and ZZVM 95

erate and IPL a new CP nucleus on account of configuration changes. The following tasks would often necessitate
an IPL on older versions of VM/SP to change:

e The list of saved segments (DMKSNT)

e The logon screen logo and printer separator logo (DMKBOX)

e The system ID (DMKSYYS)

e 3705 network control programs (when not under the control of VTAM)

e 3800 printer image libraries

¢ National language support libraries
IBM's solution to all of this was something called an override file. This was essentially a cut-down version of
those original assembler source files, and they mirrored the functionality of the parm disk mechanism of VM/XA
(wherein system configuration files were stored as plain CMS files within special extents of the system DASD
space called parm disks). Sadly, it was often seen as a rather bad solution to a problem that could be alleviated by
implementing a parm disk style mechanism for the aging VM/SP nucleus... alas, this never happened.
The ESA Feature also introduced other things that are seemingly forgotten, such as:

e Support for FBA DASD. Believe it or not, VM/XA did not support FBA DASDs! VM/ESA 1.1 introduced
support for these (note that VM/ESA 1.0 370 Feature had support from the start).

e Guest encryption support. MVS/ESA SP 4, when running under ESA Feature, could now use the cryptographic
processors on the host in a guest.

e DFSMSVM. Also called System Managed Storage, DFSMS/VM was intended to be a port of the MVS feature
of the same name, but it was ultimately a flop.

¢ A bimodal CMS This would be the replacement to VM/XA's terrible bimodal CMS; the version found on the
ESA Feature was actually reasonable.

VM/ESA Version 2: Eventually, Version 1 would come to an end. The 370 Feature would be discontinued after
Version 1.5, and Version 2 would take over with ESA support only. This version represented IBM essentially
flailing around in an effort to try to find something that would make the System/390 mainframe line attractive to
new customers, but, by the mid-1990s, nobody was actively becoming a new mainframe customer (much in the
same way as today). Alas, a lot of new features came out of the dark days of VM in the mid-90s; VM/ESA V2R1
was announced on June 12, 1995. New features included:

e OpenEdition for VM/ESA, more about this below
e 16MB line constraint relief for CMS and GCS virtual machines

e GMS GUI, an API for CMS that allowed the creation of workstation-based GUIs (very similar to the ISPF
Workstation Agent in the MVS world)

e RSCSwith TCP/IP support, where RSCS could now natively speak NJE over TCP/IP
e VSE/VSAM Compression Support, allowing for improved VSAM support on CMS

e Distributed Computing Environment for VM, a UNIX-world communications and RPC system that was popular
in the era

e Dynamic CP Exit Facility, wherein CP can gain new features without a re-IPL

e LAN File ServicedESA, a combined NFS and SMB server for VM that used an OS/2 server attached to a
mainframe as a communications processor

96 Mainframe History

VM/ESA ONLINE

vV VV MM MM

Vv VvV MMM MMM

Vv VV MM M M MM

Vv VWM M M MM

Vv VW MM MM MM

vV VW MM M MM

EEEEEEEEEEEEE ~ SSSSSSSSSSS MAAAAA
EE Vv SS MM SS AA - AA
EE VVSS MM AAM AA
EE VSS MM AAMM AA
EEEEEEEEEEE SSSSSSSSSSS AAAAAAAAAAAAA
EE SS AA AA
EE SS AA AA
EE SS SS AA AA
EEEEEEEEEEEEE ~ SSSSSSSSSSS AA AA

Fi11 in your USERID and PASSWORD and press ENTER
(Your password will not appear when you type it)

USERID ===>
PASSWORD ===>
COMMAND = ===>

RUNNING VMESA
Figure 33. VM/ESA Version 2 Release 1 logon screen

| shall go in backwards order on this, starting with LFS/ESA. Sadly, LFS was essentially obsolete the moment it
hit; the then-current System/390 Parallel Enterprise Servers of that year had shelved their old IBM 3172 LAN
Channel Station boxes for the Open Systems Adapter cards, and those absolutely blew the 3172 away in LAN
performance. LFS, requiring a dedicated communications processor, was almost completely forgotten about.

Likewise, the CMS GUI Feature was also something else that was questioned with regards to its necessity. Sure, the
GUI client applet ran on OS/2, Windows, and AlX... but who needed this? This was part of the "mainframe GUI
craze" of the mid-90s (see LANRES for more examples of this), but that didn't mean that anyone needed it or
wanted it. Eventually, in the days of z/\VM, it was finally discontinued.

OpenEdition, however, was a very interesting feature. Providing a reasonably POSIX-compliant environment for
VM, clever people (mainly Neale Ferguson) ported large amounts of open-source software to VM. OpenEdition
actually provided a port of the Java JVM and JDK; while this was not often used, it was certainly an impressive
feat. Likewise, thanks to OpenVM, you could now run things like Apache, Samba, LDAP services, InterNetNews
(an NNTP/Usenet server package), an IRC server, and more... all from CMS! OpenEdition even provided a form of
POSIX threads, but the fork/exec method ultimately worked better for most usecases.

The last version of VM/ESA was in 1999 with VM/ESA V2R4; this famous version represented a big comeback on
IBM's behalf. VM/ESA Version 2 had started out rough, but it had ironed out by the turn of the century. With the
new System Z machines, it was time for...

zIVM

z/VM 3.x: The first version of z/VM was V3R1 (i.e. 3.1), intended to continue the version numbering scheme set
by VM/ESA Version 1. z/VM 3.1 was intended to be a bit of a stopgap port, but it certainly added some key new
things:

e 64-bit support for hosts and guests (with retaining what VM called '32-bit' support for System/390 machines)

CPICMS, VMICMS, and zZVM 97

e ESS (Shark) DASD array native Fast Copy support
e TCP/IP upgrades:

— Initial version of SSL for z/VM

— OpenVM NFS client

— FTP server upgrades to make the server browsable from web browsers

— IP multicasting support

— QDIO OSA-Express2 support (adding support for Gigabit Ethernet and 155 megabit ATM)
e DFSMS/MVS compatibility

z/VM 3.1 would later get re-released on February 20, 2001, with more features (or, as the IBM program announce-
ment calls it, “enhancements”). This version is when z/VVM lost the old ROUTED server and gained the replacement
MPROUTE server (that would handle OSPF and RIP routing, as opposed to ROUTED, which only did RIP).

zIVM 4.x: z/VM 4.1 was announced on May 29, 2001, and z/VM 4.4 (the last of the 4.x lineage) was announced
on May 13, 2003. Of interest is the 32-bit nucleus; all versions of z/\VM up till 4.4 had a 32-bit nucleus that you
could use (a fun fact for the clever reader: | actually composed this paper on a z/VM 4.4 system running on a
32-bit System/390). z/VM 4.2 introduced something called a Guest LAN, wherein a feature that allowed you to
create a virtual network within CP was added (this would be later expounded upon with z/\VM version 4.4, where it
was transfigured into a true virtual Ethernet switch feature that no longer required a router served by the TCP/IP
service virtual machine).

Something interested added to z/VM around this time was something called an EDEVICE. When the System Z
machines gained FICON interfaces, something they quickly gained was support for a FICON controller running in
native Fibre Channel mode. These so-called zFCP cards allowed native SCSI devices to be mounted on the
mainframe... albeit at the requirement of having OS support for this; z/VM can emulate FBA DASDs on these
ZFCP interfaces.

98 Mainframe History

z/VM ONLINE

/W VVV MM MM
/W VVV. MMM MMM
177717 /W VvV MMMM MMMM

77 / Vv VvV MM MM MM MM
7 / VvV VvY MM MMM MM

77 / VVVVV MM M MM
77 / vy MM MM
177777 / v MM MM

built on IBM Virtualization Technology

Fi11 in your USERID and PASSWORD and press ENTER
(Your password will not appear when you type it)

USERID ===>
PASSWORD ===>
COMMAND = ===>

RUNNING EVIEVM

Figure 34. z/VM Version 4 Release 4 logon screen

z/IVM 5.x: An interesting feature most mainframe hobbyists have forgotten about is something called the Inte-
grated Console Controller. In the "olden days", you had very few options for providing a 3270 console to a
mainframe. If you had a Multiprise 3000, great! If not, you would need either a 3174 with coax terminals or an
IBM 2074 console controller that would emulate a local terminal controller with TN3270 sockets. The z890/z2990
(as mentioned above) gained this, and z/VVM 5.1 gained support for controlling those.

zZIVM 6.x: On July 22, 2010, IBM announced z/VM 6.1. The 6.x line was mainly intended to be a stabilization
feature update set, as z/VM was beginning to find itself in large deployments running many Linux guests. These
fixes would continue until its replacement (7.xX) came out. The next version after this (7.x) was the last real release
of z/VM; subsequent releases were made into a "rolling release" model.

CPICMS, VMICMS, and zZZVM 99

VM/ESA 2.4

z/Arch

ZIArch VM 41

zZIVM 3.1

2/Arch
z2IVM 4.3

2/Arch
2NM 4.2

ESA
zZVM 3.1

ESA
ZNM 4.3

ESA

zZNM 4.2

z/Arch
ZIVM 4.4

z/Arch

zZVM 5.1 2IArch

2IVM 5.2

z/Arch

zZIVM 5.3

z/Arch

ZIVM 6.1

2IVM 6.2 2IArch

VM 6.3

z/Arch
zZNM 5.4

z/Arch
zZIVM 6.4

VM/370 r1

VM/370 r2

VM/370r3

VM/370 r4

Figure 35. z/VM History -- zoom in!

100 Mainframe History

CP/67

CP/40

z/Arch
VMIESA 2.3 ZVM 7.1 2IArch
WMT2 | acn
ZVM 7.3 2/Arch
L 370 ,
VM/ESA 2.1 VM/ESA 1.2 CAL
VM/ESA 1.2
VM/ESA 1.1 ESA 370 P
VM/ESA 1.0 VM/ESA 1.0 - ——
VMIXA SP 2.1
VMIXA SP 2 VM/HPO 16 -
,_,I—> Bimodal CMS B vwisers VMISP Express
55
VM/XA SP 1 ‘
A 1 VM/HPO 15
CMS/370 15 T |
VMIXA SF 2 VMISP 15 vMAS
VM/HPO r4.2
VMIHPO 4.0
VMIXA SF 1
VM/HPO 13.6
A VM/HPO 3.4
VM/HPO 13.2
VMIXA MA 2
A VMISP 13
VMIXA MA 1 VM/HPO 13
VMISP 12
VM/HPO r2.5
VM/HPO r2
VM/HPO r1
VMISP 11
VMI370 16
VMIXA tool
VM/370 15
6/76-8/80

Mainframe LinuXx

In the late 1990s, there was a strange gap of a good UNIX system for mainframes. Sure, there was AIX/ESA and
UTS, but they were expensive, hard to run, and ultimately were commercial failures (compared to the MVS UNIX
environment). In 1998, Linas Vepstas sought to change that. His project became to be known as the Bigfoot
project, and IBM started a competing project around that time that would be known as "Linux S/390".

Bigfoot Linux/i370

Linas's port was based on a number of things. First, he had to either produce of acquire a modified version of
EGCS (recall the famous "forking" of GCC into EGCS, and later re-merging); at this point, there existed a modified
version of GCC and Binutils (the GNU assembler and linker) maintained by David Pitts that could assemble
HLASM-syntax assembler files. This compiler toolchain ran on MVS's UNIX emulator (in this era, it was OS/390
UNIX System Services), but it did not find itself being used for Linas's project.

Linas took a differentversion of Binutils and GCC. Going off Binutils 2.9.5 and GCC 2.8.1 (by the end of the
project; mind you, he started with Binutils 2.9.1 and EGCS 1.1.1). With this, he was able to start a hasty port of
Linux to the i370 CPU architecture (as that compiler toolchain, and David Pitts's, knew it as). This port would
target 370/XA machines, and would load directly from memory.

Now, it is necessary to understand a new feature of the System/390s around the time this project was being worked
on. The Support Element gained a new feature to "Load from CD-ROM or Server", wherein a specific file would
contain a memory map and a list of files to populate the system storage (at the locations specified in the memory
map) with. These files bore the .INS extension, and the Bigfoot/i370 INS file looked like this:

* INS file to load Linux kernel

* Format: <file to load> [address where to load]
* The elf-stripped Linux kernel

vmlinux.bin 0x00000000

* Boot command line
cmd_Tine 0x000d9000

* Load RAMDISK at the same address as given in command line
disk-image 0x00800000

Figure 36. Linux/i370 .INS load file

A common feature seen on Linux kernels is the concept of the kernel command line. This provides parameters for
the kernel that it needs either during or after booting, such as the root filesystem to use. The kernel command line
for this system would have been placed immediately after the kernel's end in the memory address space, and it
looks like this:

root=/dev/ram init=/bin/sh -i i370_initrd=0x800000,4096

Figure 37. Linux/i370 parameter/command line file

The ramdisk would contain the root filesystem, as i370 Linux never gained drivers for anything (except for a 3215
console). This would be an exactly 4-megabyte (the 4096 at the end of the command line specifies this) disk image
formatted with the Linux ext2 filesystem. Upon loading, this file would be mounted by the kernel's virtual
filesystem layer and ext2 driver as the root; it would also contain the initial program to run, which in the case of
the example | shall demonstrate, is the shell.

Mainframe Linux 101

When you wished to load the system, you would instruct the Support Element to do an IPL from a CD-ROM
(which could also be a path on the SE's filesystem) or a "server" (an FTP server). Since there were no drivers for

anything (including network devices), the system is as good as useless. Nonetheless, here is a sample load and run
of i370 Linux:

102 Mainframe History

Linux version 2.2.1 (root@linux-armé64vm) (gcc version 3.4.6) #1
Sun Sep 14 02:09:53 PM CDT 2025

Boot command line: root=/dev/ram init=/bin/sh

-1 1370_initrd=0x800000,4096

Device 0009 CU ID 3215 Model 00 ready

Device 0009 mapped to unix /dev/console (227, 1)

Device 000D found CU ID 3505 Model 01 ready

Device O00E found CU ID 0000 Model 00 ready

Device 0200 found CU ID 3215 Model 00 not ready
Device 0200 mapped to unix /dev/3270/raw® (227, 128)
Device 0201 found CU ID 3215 Model 00 not ready
Device 0201 mapped to unix /dev/3270/rawl (227, 129)
Device 0202 found CU ID 3215 Model 00 not ready
Device 0202 mapped to unix /dev/3270/raw2 (227, 130)
Device 0203 found CU ID 3215 Model 00 not ready
Device 0203 mapped to unix /dev/3270/raw3 (227, 131)
Calibrating delay Toop... 465.31 BogoMIPS

Memory: 59640k available (748k code, 940k data, 48k init)
Init Ramdisk: 4096k [00800000,00c00000]

POSIX conformance testing by UNIFIX

Linux NET4.0 for Linux 2.2

Based upon Swansea University Computer Society NET3.039
NET4: Unix domain sockets 1.0 for Linux NET4.0.

NET4: Linux TCP/IP 1.0 for NET4.0

IP Protocols: ICMP, UDP, TCP

Starting kswapd v 1.1.1.1

pty: 256 Unix98 ptys configured

RAM disk driver initialized: 16 RAM disks of 262144K size
loop: registered device at major 7

1370_setup_devices /dev/console (c 227 1)

RAMDISK: ext2 filesystem found at block 0

RAMDISK: Loading 4096 blocks [1 disk] into ram disk...
VFS: Mounted root (ext2 filesystem).

freed initmem from 0010e000 to 0011a000 (12 pages total)
raw3215 open of /dev/console (c 227 1)

can't access tty; job control turned off

/ # uname -a

Linux (none) 2.2.1 #1 Sun Sep 14 02:09:53 PM CDT 2025 1370 GNU/Linux
1370 _do_signal sh/1 signr=17 handler=8187calc
i370_sys_sigreturn: regs=7f800768

/ # mount -a

1370 _do_signal sh/1 signr=17 handler=8187calc
i370_sys_sigreturn: regs=7f800768

/ # mount

/dev/root on / type ext2 (rw)

/proc on /proc type proc (rw)

1370_do_signal sh/1 signr=17 handler=8187calc
1370 _sys_sigreturn: regs=7f800768

/

Figure 38. A rare view of a running i370 Linux system

Ultimately, there would be IBM's own Linux-for-S/390 port that would end up totally replacing Bigfoot/i370;
Linas's crew was essentially powerless to beat IBM's crew on their own front... and the i370 Linux port dies out.

Mainframe Linux 103

Well, mostly. In September 2024, Linas actually dusted off the old source code for the i370 port, made it work on
Hercules (which was now mature, as opposed to how it was in the original i370 era), and published the source code
on his website; this effort is how the earlier listing of a i370 kernel starting was taken.

IBM Linux/390

In the late 90s, IBM partnered with Marist College to attempt to do the same thing (in parallel) as Linas was
spearheading. IBM's effort focused on newer machines (those being the 9672 G2-and-newer), whereas i370 focused
on older machines. Actually, there were several differences between s390 (as it became to be known, "s390" being
the name of the directory under the Linux kernel source tree that held the machine-specific code) and i370:

e The i370 assembler could process HLASM-style code, whereas the s390 assembler was only capable of under-
standing the UNIX assembler syntax.

e The s390 port required a 9672-G2 or newer, whereas the i370 port could run on any 370/XA-or-newer
machine.

e The s390 project was spearheaded entirely by IBM, whereas i370 was a "vendor-neutral” project.

The Marist folks worked on Linux/390 intensely, and by 2000, a usable distribution had been produced. This came
in the form of a modified version of Red Hat that became to be known as "Marist Linux". This OS could be
started in three ways:

e From a tape, which could be produced from MVS, VM, or VSE
e From the VM punched card reader (this method is still used today)
e From an INS file when installing without VM, just like the i370 port (this method is also still used today)

Installation was relatively simple; you would load the kernel (which itself was followed by the kernel command line
text and then the ramdisk, just like i370), configure a network device, format a DASD, then restore the root
filesystem. After that, re-IPL and you were off to the races!

By 2001, the System Z was in full swing and s390 Linux was quickly ported over to it; this came in the form of a
modified Red Hat (as usual) called Think Blue Linux. This ended up being discontinued in favor of other "main-
line™ Linux images around that time; Debian quickly gained a s390 distribution on their list, as did CentOS, SUSE
Enterprise Linux, and more. Today, s390x (the "x" being the 64-bit port of s390 Linux to the System Z) Linux's
install base is nearly entirely Ubuntu Server, SUSE Enterprise Linux, Red Hat Enterprise Linux, and Debian. More
and more drivers are on the system today now than ever, and one can even attach PCle cards to the System Z PCle
card cages (via adapters, of course)!

104 Mmainframe History

Mainframe UNIXes

In the early 80s, there were two competing efforts to get UNIX ported to the System/370. These were:
e Princeton University UNIX/370: a native port of UNIX v6 that evolved into Amdahl UTS

e AT&T Bell Labs UNIX/370: a hacked version of TSS/370, postdating Princeton but being intended for much
larger systems

Let us examine these two interesting systems, then examine their successors. | have taken the liberty of discussing
these in reverse order, as the fruits of Princeton's labor came only after Bell Labs's endeavor.

Bell Labs UNIX/370

Bell Labs's attempt was certainly more interesting than Princeton's. For one, they did not directly port UNIX to run
on the S/370 CPU; instead, they took TSS/370 as a base, and replaced the user process supervisor with one that
functioned as a UNIX system. While this may seem rather odd and inane, this was actually done for good reasons:
first, the 1/0 model of the S/370 is radically different from the PDP-11 system UNIX was originally written to run
on. Because of this, the Bell Labs engineers instead chose to do the TSS hack; this also provided an unexpected
benefit: the IBM field service personnel could run their native problem analysis tools to determine what could be
going wrong with a S/370, as any hardware error reports (from the EREP program) would be in a standard format
that did not necessitate the writing of UNIX-native code to emulate this format. Put simply, they took the easiest
way out.

The Purpose: One must also understand why this project was started in the first place: Bell Labs was the
progenitor of some of the telephone switches used throughout North America. One of those was the 5ESS (ESS
meaning Electronic Switching System), a combination analog and ISDN phone switch. In 1978, Bell Labs started to
seriously consider bringing UNIX over to a larger computer than what they were using; the 5ESS development
needs were so large relative to the comparatively small machines the engineers had to work with that their patience
eventually expired and the project began. The decision to use UNIX for the 5ESS software development actually
predated the formal start of the project in 1980. By late 1980, the programmers writing the 5ESS software were
using a whopping 9 PDP-11/70s. UNIX was selected in the first place because the programmers that would be
working on the 5ESS project were already familiar with tools found on PWB/UNIX, which we now today know as:

e make, the program generation and maintenance utility

e m4, the macro processor

e awk, the text programming language

e sed, the text stream editor

e vyacc, Yet Another Compiler Compiler

e lex, a lexer generator

e an expanded editor, predating vi

e SCCS, the UNIX source code control management system
The development crew having to use PDP-11s found themselves in a rather terrible position. Their 9 PDP-11s
meant fragmented development, but the machines were connected together "using a commercially available high-
speed network with drivers written for the UNIX operating system.” Alas, they were not using a centralized source
code management system (like Git today); when they were ready to build a firmware image for the prototype 5ESS

they had, they would have to send all of the objects over to one of the PDP-11s for linking (that same machine
would coalesce all of the object files from the other systems). Since the 5ESS project began to grow, it was

Mainframe UNIXes 105

starting to no longer become feasible to continue to use the approach they were using; around this time, UNIX/370
caught the eye of the switch engineers.

Since the PDP-11s were obsolete performance-wise and cumbersome to conduct as an entire network, the search for
a replacement began. The engineers looked at a VAX 11/780, but it was only twice as fast as the PDP-11. This
meant they could halve their PDP-11s, but the VAX systems were also a lot larger and more power-hungry. As
such, someone considered getting a real mainframe. An IBM 3033 AP System/370 was 15 times faster than the
PDP-11s, and, though it was larger than a room full of VAX-11s, it was much easier to work with (as it was a
single system, not a disjoint cluster in an era before UNIX had good network filesystems and remote management
tooling). The engineers working on UNIX/370 dusted off their terminals and got back to work.

As mentioned before, the radically foreign 1/0O architecture of the S/370 initially scared some of the engineers.
UNIX had several roadblocks in its original implementation that made the project even more difficult on top of that:

e The System/370s were multiprocessing machines (if equipped), UNIX did not support multiprocessor machines
at all.

e The System/370 memory model was that of paging, not swapping like it was on PDP-11 UNIX.

e The customer engineers from IBM expected the aforementioned EREP-format error logs, UNIX would have to
gain code for this.

e The 1/O devices on most System/370 machines could be multipathed, UNIX didn't even support channelized
1/0.

The Hacked TSS: Needless to say, this would be daunting task. As mentioned, the engineers realized they could
skip having to write a lot of new code by adapting TSS/370. Primary sources mention that choosing TSS/370 as the
system to base UNIX/370 off of was, at best, quite controversial. Nobody knew much about the system as it was
rather poorly documented outside of IBM, and its install base (especially after the announcement of VM/370 being
a fully supported system) consisted of so few systems you could count them on your fingers. In 1979, Bell Labs
talked to IBM about modifying TSS to support the structure the rest of the UNIX/370 system expected. IBM fol-
lowed through with this, and, under a program license agreement, provided Bell Labs with the modified TSS/370
system in 1980.

This new TSS was surprisingly structured. There were 3 levels of programs that the OS would run, consisting of
userland programs (like shells, editors, compilers, and other such tools), the UNIX System Supervisor (adapting
TSS to a C-style UNIX kernel interface, this was essentially a userland port of the UNIX kernel), and the Resident
Supervisor (the TSS core that provided multitasking, hardware management, system control functions, and such).
Every UNIX process ran within its own 16-megabyte virtual memory address space (for the first time in UNIX
history), and the Resident Supervisor provided services to the virtual address spaces (like scheduling the execution
of the address spaces, dispatching the execution queue, managing real storage, etc).

Memory Model: Strangely enough, this memory management does not work like you think it does if you are
used to the VAX virtual memory UNIX model. Each UNIX system process ran in its own containerized address
space along with a copy of the UNIX System Supervisor. A UNIX system process is essentially a virtual UNIX
machine; multiple user programs could run within the address space. The UNIX System Supervisor was mapped
into the high 8 megabytes of the virtual memory address space, and user programs resided in the lower 8 mega-
bytes. The bottom page was reserved for interrupt vectors (in true S/370 fashion). Since the S/370 memory manage-
ment unit allowed for pages to be shared between processes (which, in this context, a process running under TSS
would be an entire virtual UNIX machine); this allowed several identical running copies of various UNIX programs
across several UNIX system processes to be shared. Furthermore, the UNIX System Supervisor could be shared
amongst the system processes, alleviating excess memory usage.

Due to this design, there were 2 layers of system calls present in this strange OS. User programs could make UNIX

system calls, which would be trapped by the UNIX System Supervisor. If the system call was not related to any-
thing that required hardware control, the UNIX System Supervisor could dispatch and execute that system call on

106 Mainframe History

its own. If it needed to call the Resident Supervisor (remember, this is the modified TSS/370 nucleus), it could do
so. Interestingly, all of the UNIX System Supervisor to Resident Supervisor system calls were processed fully asyn-
chronously; when the system call execution was done and it needed to return data to the caller, it would actually
trigger an interrupt to the virtual address space. As you can probably tell by now, the "UNIX address spaces" were
absolutely "UNIX virtual machines”, and there was a strong CP/CMS influence on this system! Likewise, if the
UNIX System Supervisor needed to interrupt a user process, it would do so through a signal (in true UNIX
fashion). The system could even utilize the S/370 Virtual Machine Assist feature, boosting performance even further
by alleviating an unnecessary layer of system call return indirection.

The S/370, as mentioned, also featured a paging memory architecture. This meant the UNIX system address spaces
could be fully preempted and paged out of memory whenever there was a storage constraint (or just inactivity, like
an idling shell that's been logged in for a day with no commands being ran). The Resident Supervisor handled all of
the virtual memory operations, and the UNIX System Supervisors running under it would not have to do any of
their own memory management outside of handling the brk() system call that grew a user process's address space.
To alleviate memory pressure even more, the Resident Supervisor could also asynchronously perform page
migration -- this was a feature wherein paged-out processes stored on fast non-RAM storage (devices such as fixed-
head disks, drum memory units, or "solid-state memory") could be moved over to slower storage (like normal
moving-head DASD disks).

Device Model: The disk and 1/O subsystem was also rather different from PDP-11 UNIX. For one, the engineers
chose to use the normal UNIX filesystem of the era... albeit with an enlarged block size (up to 4096, which matches
the S/370 page size). The 1/0O subsystem also cached as much as it could; on a 16-megabyte S/370, 4 megabytes of
that address space was allocated for disk 1/0O buffering. Note that this caching and filesystem 1/O processing is done
by the UNIX System Supervisor and not by the Resident Supervisor; this improved performance quite a bit, and
especially moreso if multiple paging layers were used. Speaking of which, the Resident Supervisor provides under-
lying system calls that permit disk access, albeit in a rather unusual way. Rather than executing disk 1/0 operations
synchronously, the block 1/O layer (in the RS, not the USS) functioned through memory-mapped file buffers. For
example, to read a file, the USS will allocate a buffer, then signal to the RS to read in the data and deposit it into
that buffer. Likewise, for writing, there is outbound caching; whenever a write occurs, the RS will claim that the
write was successful, but it really just waits in a flush queue (this is the same as the modern-day disk caching
layers found on modern OS kernels).

Process management within the USS regions was also rather clever. In this era, UNIX did not have threads;
spawning new processes with fork and exec was essentially the only option. In the modern day, the UNIX fork call
employs a copy-on-write technique; that is, only copy the memory portions that you absolutely need (and do it one
page at a time to save on space and time). However, UNIX/370 didn't do partial CoW like one might find on a
modern kernel; instead, it would spawn off an asynchronous copy job and the program would be usable during the
copy through page sharing (of which the shared pages had a rather clever name: multiplexed pages). UNIX/370 also
had design issues related to process synchronization that needed to be worked out. Consider the case of being ran
under a VM: at any point, while your process is running within a VM, your execution may be stalled or preempted
at any time. This is also true with UNIX/370: the USS address spaces could be stalled at any time by the RS for
various reasons (page faults, storage exhaustion, disk 1/0). Since the S/370 machine UNIX/370 targeted was also a
multiprocessor system, one would also have to figure out how to synchronize user programs across several physical
CPUs. To address this, the engineers used the Dijkstra Semaphore mechanism in which resource accesses were
counted and serialized between multiple CPUs.

Terminal handling was also somewhat difficult. On the S/370, the usage of plain ASCII terminals was rare; this is
in direct contrast to what UNIX expected, wherein full-duplex immediate data transfer was often necessary to
support the usage of nearly all programs (from the shell to the editor). This may not be an issue on small systems,
wherein the CPU is interrupted with every keypress since it needs to echo the character back to the terminal, but
this becomes very interrupt-heavy with many logged-on users. The AT&T 3B20 machines (which, in the era in
which UNIX/370 was written, the largest system that ran UNIX) had front-end 1/O processors that alleviated the
interrupt load on the host CPU, but those were tailored to machines foreign to the S/370. IBM, of course, manufac-
tured 3705s (replacing 2703s) and 3274s; neither of these were suitable for large amounts of directly-controlled

Mainframe UNIXes 107

ASCII terminals. Note that ASCII terminals could be connected to a 2703/3705, but the OS on the host S/370
processor did not have direct character control over them (a good example to see this would be noticing the distinct
lack of fullscreen programs usable on ASCII terminals connected to a VM/CMS system).

To alleviate this terminal issue, the engineers found a rather clever solution to replace the terminal controllers that
would be of no use to UNIX: use an IBM Series/1 as a front-end processor. Bell Labs asked IBM for help once
again to rig up a Series/1 with a S/370 channel interface as a terminal controller; IBM delivered this code and
hardware in late 1980 to great success. Later, the engineers realized they could use a full AT&T 3B20S as a
front-end processor too; this used conventional UNIX as the OS on it (rather than some strange, to the engineers,
Series/1 OS). Seeing that they had figured out how to run multiple different computers as terminal controller
front-end processors, some postulated that it would be possible to have frequently-used typing-heavy programs (like
fullscreen editors and shells) run directly on the front-end processor; this never matured, but this idea was seen
implemented on other non-IBM computers.

Deployment: In order to deploy this great system (the original 3033AP), Bell Labs realized an ideal migration
would consist of a gradual turnover to the mainframe. The networking code the 9 5ESS development PDP-11s used
was ported over to the 370, and the user migration was done with 10% of the userbase moved over to the 370
every other weekend. The initial deployment had an 80% reliability, but this was upped to 95% and eventually 98%
within 6 months of the original deployment. Once Bell Labs realized they could now run multiple mainframes in a
UNIX/370 network, they did so; they had a tri-system network of a 3033AP, 3033UP, and 3081K system (in 1983).
Near the end of their project, they added a 4341 into the fray; this machine was just as functional as the other
systems. Eventually, UNIX/370 would come to an end, but the important lessons learned from it would go on to
shape UNIX for the better years down the line.

Princeton UNIX/370

Computing at Princeton has a very colorful history, and they played pivotal roles in the community aspect of IBM
mainframes. However, our story takes us to the mid-1970s, when two mainframes were installed in Princeton's
campus. There was a System/370 Model 158 that ran APL timesharing for the State of New Jersey's educational
system; there was also a System/360 Model 91 monster that only ran batch jobs. Since so few people had access to
the APL system, some departments sought computers of their own. One of those was the Electrical Engineering and
Computer Science department, who chose to purchase a PDP-11/45. It originally ran what | believe was RSTS, but
it was converted over to UNIX by 1975. Many EECS students and staff took to the system to great success, but
trouble was on the horizon. In late 1975, New Jersey decided they would end the relationship in which the 370/158
would be taken away. The EECS UNIX users then heavily petitioned the Computing Center staff to consider buying
a small PDP-11/70 to timeshare with UNIX. The original plan that Princeton had was to buy a System/370 Model
145 (because that was all that the university could afford); a PDP-11/70 would be even cheaper, and save the
money quite a large chunk of money.

IBM, never to be outdone, decided they would try to undercut the DEC competition and sold Princeton a tremen-
dously discounted 370/158... which just so happened to be the 370/158 that was already sitting in the building. In
that era, a lot of mainframes were actually rented from IBM, and the State of New Jersey was doing exactly that.
When they stopped paying for the APL timesharing, Princeton quickly installed VM/370 on the system, and so
began Princeton's famous love of VM. Sadly, the EECS UNIX users were rather disappointed by the decision, but
not all hope was lost. Tom Lyon jokingly proposed that, well, since the System/370 was running a virtual machine
monitor, someone could port UNIX (which was written in a high-level language, only requiring the porting of a
compiler) to run under it!

His older classmates told him it was a terrible idea, and the idea was gone as soon as it left his mind. Surprisingly,
not all hope was lost, though; in the summer of 1975, Eric Schmidt (the former Google CEO and philanthropist)
took an internship at Bell Labs. There, he helped write the UNIX lex program. He discovered that Bell Labs had a
C compiler for the System/360 that cross-generated object code from a PDP-11, but it was unclear who wrote it;

108 Mainframe History

Eric figured that Mike Lesk (who he was working with to write lex) was responsible for its creation. Seeing that the
tools were sitting there, Eric remembered Tom's seemingly off-the-cuff non-serious remark.

The Initial Port: Saying yes to Eric's request to assemble a Princeton team to port UNIX to the 370, the process
began. However, there were many issues to overcome beforehand. Of course, the EECS folks had their PDP-11/45
(complete with the UNIX source code too, as one would frequently have in that era)... but it was far from the
370/158 and totally disconnected. Even without a network link, issues were all-too-present; the PDP-11 did not have
a 9-track tape drive, and the 370 of course did not have a DECtape drive. To overcome this, Tom writes that a
rather crazy workaround involving many hops was found:

e The EECS PDP-11/45 was connected to a PDP-8 in the same EECS building, but it did not have very good
reliability

e An excessively long serial cable that ran from the PDP-8 in the B wing of the E-Quad to a terminal room in a
totally different wing (the E wing) of the E-Quad; this cable was so long and ran through two too many
buildings, and was plagued by lots of line noise

e A multiplexed line-of-sight infrared optical link that connected the terminal room to the computer center
located across the street at 87 Prospect Ave; this link provided a 9600 baud connection, but it broke during rain
or foggy weather (this device was manufactured by Tran Telecommunications)

e The 370/158 mainframe in the basement of the Computing Center, wherein the multiplexed optical link was
attached to an IBM 2703 communications processor

e VM/370's RSCS program, which would receive files over one of the serial links (which was ultimately tied to
the serial port on the PDP-8)

e A test virtual machine, which would receive the virtual card decks from RSCS

Needless to say, this complex scheme was less-than-ideal. Nonetheless, the C compiler (which ran on the develop-
ment PDP-11) did not produce object code, only Assembler XF input listings. This meant that the C compiler's
assembler output would have to be transmitted to VM, assembled on VM, linked, and finally could be tested.
Apparently, the linker was quite a headache to the UNIX guys, furthering the difficulty. By 1977, Tom had been
working rather solo (since two of the other guys he had on his UNIX team had graduated); he got the kernel to
work reasonably well, ported over the filesystem (which required disk access to be figured out), got a shell to work,
and got some userland programs ported over. Sadly, the terrible communications scheme began to degrade, ulti-
mately ending the project in the fall of 1977. However, change would come when a certain company reached out.

Amdahl: Amdahl is a company that, throughout the 80s, was IBM's biggest competitor. It had been founded by
one of the lead designers of the System/360, and offered System/370-compatible (and later System/390-compatible)
machines that sold reasonably well. John Hiles, who worked for Amdahl, managed to get Tom in one of those
"right place, right time" moments: Tom was doing a summer internship at Bell Labs in 1977, when Ken Thompson
answers the phone: it's John, who was trying to get information about what was seemingly just a rumored port of
UNIX to the System/370. Tom, being close by to Ken, has a telephone receiver handed to him, and he begins to
explain Princeton's UNIX/370.

UTS: Seeing that UNIX/370 might be a serious future for Amdahl, John went and acquired a UNIX license from
Bell Labs. On spring break in 1978, Tom made it out to Amdahl to do some consulting for a week. Armed with 4
DECtapes containing the UNIX/370 sources (just to be clear, this UNIX/370 has absolutely nothing to do with the
later Bell Labs TSS-based UNIX port), he and John rented some time on a PDP-11 held at a local DEC field office.
There, he loaded up UNIX on the rented PDP at that office, and copied the DECtapes over to 9-track tapes. In a
rare feat of preservation, images of these original tapes not only exist, but are available on GitHub; there were 4
DECtapes:

o the full UNIX/370 source
e the UNIX/370 "virgin source"

Mainframe UNIXes 109

¢ the modified 370 C compiler

¢ the modified 370 cross-assembler

Shortly thereafter, in June, Tom began his job at Amdahl. By early 1979, the team had managed to bring over the
rest of UNIX v6 to the 370 CPU architecture, and they were running a full UNIX on an Amdahl 470V/6 (of which
Amdahl had partnered with Fujitsu to build) under VM/370. This port of UNIX was named "Au" (like "gold", on
the periodic table) and quickly took success to its users. Tom had written a 3270 terminal driver for the OS, which
also allowed for full-screen applications to be written (such as an advanced editor). In late 1979, Amdahl acquired a
UNIX v7 tape from Bell Labs, and Amdahl UTS was properly announced in 1980.

Tapes for UTS were eventually sent back to Princeton, owing to the fact that a lot of the UTS developers were
Princeton graduates. These tapes found themselves discarded on the side of the road outside of the Computing
Center, until Dave Jones at Sine Nomine Associates discovered their untimely demise. These tapes were recovered,
dumped, and in that stack were tapes for the original 1980 release of Amdahl UTS (complete with the PWB/UNIX
tooling). Alas, it can be loaded and ran:

IPL 220

Enter system name:
autouts

UTS Version 1.0
Storage = 6144K
1405 free pages
/dev/dsk220:
/dev/dsk110:
/dev/dsk330:
/dev/dsk550:
/dev/dsk660:

no space on dev 4/0
no space on dev 4/0
no space on dev 4/0
no space on dev 4/0
no space on dev 4/0
no space on dev 4/0
no space on dev 4/0
DISCONNECT AT 16:37:29 CDT MONDAY 10/06/25

Press enter or clear key to continue

RUNNING VMSP
Figure 39. Amdahl UTS 1.0 running under VM/SP R5

IX/370

Little is known about 1X/370 in this day and age, solely because of the fact that there are no known extant tapes of
it available in this era. Nonetheless, it was designed to run under VM/SP, and was supposedly popular on the 9370.

What information is available for 1X/370 comes from, of all places, the 9370 product announcements and the asso-
ciated program product announcements that followed it. 1X/370 boasted that it had virtual memory storage and
paging, which IBM claimed many other UNIX System V implementations lacked (this is true; note that this product
was produced before the newer UNIX System V Release 4, the version most commonly seen on UNIX workstations
and servers through the 90s).

110 Mainframe History

It also remarked some interesting notes about the filesystem implementation. The announcements note that 1X/370
used a filesystem block size of 4096 (does this sound familiar?), whereas other UNIX implementations used 512 or
1024. 1t also boasts the addition of a system call that facilitated a filesystem locking mechanism (one might recog-
nize it from newer UNIX systems: lockf).

Most interestingly, it notes that several IX/370 subsystems could run under one master 1X/370 system. Each sub-
system operated independently of the others, with fully isolated users, programs, and more. This is notably similar
to the famous Bell Labs UNIX/370 system! Since it had to run under VM, it supported the VM-emulated line
printers (and could also associate tag data with the print jobs, allowing for file distribution on an RSCS network). In
order to make the system passingly attractive to an office customer base, IBM licensed INmail and INnet from
Interactive Systems Corporation (of note for their PC UNIX offerings in this era; PC/IX and 386/ix were reasonably
popular until Sun acquired ISC and released Interactive UNIX). To connect to ASCII terminals, both the UNIX/370
Series/1 terminal attachment as well as the 9370's ASCII Subsystem Controller.

Needless to say, all signs point to 1X/370 as being derived from the Bell Labs UNIX/370 project. Alas, no tapes of
it exist, so further study is impossible.

AIX/370

In 1988, IBM partnered with Locus Computing Corporation to produce a (supposed) port of AlX to the PS/2 (i.e.
Intel 386) platform. In reality, it was a port of the OSF/1 codebase to the 386, and it was surprisingly expensive for
the customers that did buy it. Nonetheless, the people that did buy it found a reasonably useful system, but it was
not a commercial success.

More interestingly, however, was something else that resulted from the IBM/Locus partnership (also released that
same year, on March 15, 1988): AIX/370. This was a true and real port of UNIX (again, OSF/1) to the 370 and
370/XA CPU. In a flash of brilliance, it also supported Token Ring and Ethernet networking through the IBM 8232
LCS boxes (predating the later 3172); to date, no other version of UNIX on the mainframe save for Amdahl UTS
supported this. It had to be ran under some version of VM (supported was VM/SP, VM/SP HPO, and, surprisingly,
VM/XA SP), and was fully bimodal; it even supported the 3090's Vector Facility! It was fully POSIX-compliant,
and had feature-parity matching with both UNIX System V Release 2 and 4.3 BSD (at that point, those were the
only two versions of UNIX that had significant usage share).

This port was no joke. It had, as evidenced by the announcement letter:
e System/370, XA, and 3090 Vector Facility support; quite a tall order for a totally new OS
e full TCP/IP support
e a "DOS Server" feature that may have been related to an earlier Locus product
» The Transparent Computing Facility, allowing access to distributed computing systems

e full X11 support (albeit through a network; no display devices attached to the mainframe would be able to
show X graphics)

e an optimizing C compiler

e acommand to invoke a program on CMS (named oncms)
The addressing size limits were rather interesting. When the OS was running in 370 mode, user programs could
access up to 8 MB of virtual memory; in XA mode, the ceiling was raised to 770 MB (a rather odd limit). The

Vector Facility was also fully supported, and IBM had planned to release a port of VS FORTRAN (both the com-
piler and the Engineering/Scientific Subroutine Library) to AIX/370, but no surviving copies of this exist.

The TCP/IP stack was interesting, as it was the UNIX System V TCP/IP stack ported straight to the 370. It had
support for SMTP, FTP, Telnet, the BSD socket API, the ability to be a router/gateway (which supported Ethernet,

Mainframe UNIXes 111

Token Ring, and channel-to-channel adapters, presumably for talking to the VM TCP/IP stack directly), and support
for the BSD "r commands" (rsh, rcp, rlogin).

The DOS Server feature was a host-based program that ran on an AIX system (which could be AIX/6000 or
AIX/370) wherein connections from DOS (3.3) PCs were accepted. The DOS PC would run the IBM AlIX Access
for DOS Users program, which provided access to AIX files, printers, and included a VT100 emulator for remote
connection to AIX (this program also included an absolutely famous unused error message, which was, and | quote,
"Sex feels so fucking good, | just can't stop.”, | am dead serious).

In addition to that DOS Server package, AIX/370 could also talk on an NJE network (with the aid of RSCS,
presumably running on the same VM system under which AIX/370 executed). Full NETDATA file support was
present, allowing users to easily transmit files, datasets, and emails between AIX/370 and other OSes.

Since X.25 was quite popular in this era, AIX/370 also had support for X.25 networks. However, it would require a
PS/2 Model 80 (though it would possibly work with other systems) that had an X.25 synchronous serial adapter
installed, and was running AIX PS/2. The AIX/370 host would, by way of being on the same LAN as the AIX PS/2
box, be able to utilize an X.25 network (this almost certainly seemed to be a solution wherein users would log into
the AIX PS/2 system from the AIX/370 system, then be able to make X.25 PAD connections from there or vice-
versa).

The Transparent Computing Facility was another AIX PS/2 overlap product, and it allowed an AIX/370 system or
an AIX PS/2 system to become a member of a true cluster system. Programs could run on any host, files could be
stored on any host, and you did not have to switch which node you were logged into in order to run a program on a
different machine. This also incurred a shared file system, and there were redundancy and locking measures to
ensure that a system failure on one node would not result in other programs automatically being reverted to older
versions of files. Because of the distributed nature of this clustering scheme, processes could also hot-migrate from
one system to another in a bit of a load-balancing scheme. Really, this was a surprisingly advanced program, and
the functionality of it has not been seen since (as no copies of AIX/370 are known to exist, and it does not seem to
be archived for AIX PS/2 either).

IBM, having partnered with Interactive Systems Corporation to provide first-class ISV application support for both
AIX PS/2 and AIX/370, made available a number of ISC's own programs to both of these systems. INnet was a
UUCP-style networking package that ISC produced, and it worked hand in hand with INmail to transfer emails to
remote sites. Since it was fully compatible with UUCP, users were not locking themselves into some proprietary
network system that would stop being useful when support ended. ISC also provided an improved FTP client
(wherein the command that was ran was all-caps too, "FTP") and an improved editor (INed, a program that is often
seen on Interactive UNIX systems of the same vintage) that was a heavily improved offering over the built-in
UNIX vi program; it supported multiple edit sessions, several windows, and better copy-paste functions. Alas, it
was eventually replaced with...

AIX/ESA

Seeing that it was high time for an upgrade to AIX/370 (only if there were only ever a few customers), IBM
announced AIX/ESA in 1990. This was overtly based on the OSF/1 codebase, even though earlier versions were
based on it. The most important change was the ability for it to run without the aid of VM, directly on the real
hardware; it also gained multiprocessor support (though it started with support for 3 CPUs; support for 6 CPUs was
added later by September 30, 1992).

Support for HIPPI (High Performance Parallel Interface) adapters was also added; this was an old interface intended
to connect peripherals to supercomputers, and had an effective throughput of 800 megabits. AIX/ESA also gained
for the new-and-improved 3172 Interconnect Controller (though frequently just called the 3172 LCS), but you could
now use a channel-attached (a parallel channel, mind you; the ESCON interfaces did not yet function with this
scheme) RS/6000 as a front-end network processor on the mainframe. This supposedly ran faster than the 3172 LCS

112 Mainframe History

boxes, which was accessed like a 3088 CTC adapter; this was aided by the much faster POWER CPU of the
RS/6000 (which certainly dwarfed the CPU performance of the 8283s and 3172s, which were essentially just PCs).

Since this was based off of OSF/1, there were more features than meets the eye! For one, you could now dynam-
ically load kernel modules (a feature now standard on UNIX, but was almost entirely unheard of in 1992), use an
advanced UNIX accounting system (not banking, but taking account of processes), and more.

Sadly, AIX/ESA barely had any installations. It was a massive failure because it suffered the dreaded fate of com-
peting against a product from the same vendor. This competition came from MVS/ESA V4R3's OpenEdition
feature, wherein MVS, the stalwart of mainframe operating systems, had its own UNIX implementation. This
system saw much support, and since it came with MVS, sites that were merely trying to stay with the latest version
of MVS found themselves in possession of a rather good UNIX environment for free.

Mainframe UNIXes 113

TPF and ACP

The history of TPF is almost synchronous with OS/360, and the System/360 in general. In the early days of com-
mercial computing, there was a software system that IBM and American Airlines developed called SABRE (Semi-
Automated Business Research Environment). This was intended to be a computerized replacement to the earlier way
of manually handling airline reservations: before the dawn of computing, airline ticket salespeople would sell seats
on a flight, and would then report to the departing city's airport how many seats were being sold. If the plane was
close to full, the head office would send a message to the salespeople to stop selling any more seats. Seeing that
this was a problem, IBM approached American Airlines in 1953 and asked for help. By the early 60s, the future
was clear -- computers were the answer.

SABRE: While IBM was working with American Airlines, they chose to start software development contracts
with Pan- Am and Delta Airlines too. As such, there were three airline reservation systems that IBM was making in
the early 1960s (before the S/360):

e DELTAMATIC (ran on an IBM 7070), Delta Airlines
e PANAMAC (ran on an IBM 7080), Pan-Am Airlines
e SABRE (ran on an IBM 7090), American Airlines

In 1962, nobody had really figured out or perfected the craft of software engineering and software development
project management. As such, the development of SABRE ended up being plagued by constant delays, not to
mention that IBM was (at the same time) working on similar systems for two other radically-diffferent computers.

When SABRE was finished in 1964, it was the first online tranaction processing system and the first large-scale
data processing system that wasn't owned by the US government. Raytheon built terminals that attached to the host
mainframe via telecommunications lines, and these were placed in all of the serviced airports that American Air-
lines had a presence in. In 1965, IBM finished DELTAMATIC and PANAMAC.

PARS: Seeing that IBM had made a poor decision to write three radically-different airline reservation systems,
IBM sought to unify the customers' computing needs on the up-and-coming System/360 line -- this replacement
program needed to run on a variety of models (with the specifified range being the Model 40 through the Model 75;
the Model 65 was the most popular). This replacement software package would be known as PARS: the Pro-
grammed Airline Reservation System.

PARS was originally written to target midsized airlines, rather than the giants discussed above. The development
turnaround time on PARS was amazing compared to that which came before it: in 1965, shortly after the
annoucement of the System/360 and on the tails of the shipments of the first System/360s, PARS was made avail-
able to customers. The first customer to adopt it was Eastern Air Lines, wherein they named their install “System
One” Later that year, the British Overseas Airways Corporation chose to build a PARS installation (which they
named BOADICEA, as in, the ancient queen of England). Seeing that England was a smaller country and would
absolutely be making many international flights, IBM updated PARS to support such features and BOAC gained
their IPARS system (the | was for International).

During that same timeframe from 1971 to 1973, American Airlines was undergoing their migration off of SABRE
and onto a PARS system (which ran on several System/360 mainframes). Seeing that American Airlines was having
such good success with PARS, all but one of the ten major US airline carrier companiess followed suit and adopted
PARS.

Seeing that the hardware was evolving to the System/370 and different-sized airlines were having good success

adopting it, IBM split the operating system component from the transaction processing component; the OS became
known as ACP (Airline Control Program) and PARS ran on top of that.

114 Mainframe History

ACP: In the early 1970s, the PARS systems were seen providing great success to the companies that installed
them. Fewer cancelled flights, fewer delays, and more -- everyone was taking notice. Unlike the precursor SABRE
system, the design of ACP/PARS was very forward-thinking. Rather than a centralized system, PARS/ACP was
distributed!

However, not everyone was content. With more money moving around in that era, the big US banks looked upon
the airline industry with envy. They were getting more customers through the door than ever, and the banks were a
decade behind in computing software. In the early 70s, the banks had adopted CICS and IMS for most of their
transaction-processing workload, but the performance left much to be desired.

The banks had a whole suite of online transaction-processing systems, but their slow CICS/IMS systems were far
from performance-competitive with the airline computer systems. As such, they begged IBM to give them a version
of the PARS/IPARS transaction processing system, and they delivered in 1975!

The “new” TPF system was full of interesting software innovations -- for example, the SabreTalk programming
language (sometimes called PL/TPF)! This language wsa produced in a three-way partnership between IBM, Amer-
ican Airlines, and Eastern Air Lines. By 1973, Eastern Air Lines was selling the SabreTalk compiler (for $95,000).

Eventually, that program would come to pass; British Airways was the last major user of SabreTalk programs com-
prising their Flight Operations Computer System (FICO) under the ALCS system... except the programs are
compiiled by first transpiling to C (with a commercially-available compiler) and then compiling that C program.
Delta Air Lines also used SabreTalk programs, but has been transitioning to C++ on TPF.

TPF and TPF/ESA: In 1979, IBM continued to genericify ACP into the Transaction Processing Facility (i.e.
TPF). There were various versions of TPF, with TPF/ESA 4.1 being the last version that ran on ESA/390 machines.
Programs for TPF were predominately written in assembler language.

TPF could run in both a tightly-coupled multiprocessing mode (i.e. standard multiprocessor mainframes like the
3083), or loosely-coupled mode across a network. For some reason, a single CPU within a TPF LPAR is called an
instruction stream or i-stream, and a machine with more than one i-stream will be running tightly-coupled TPF.
Several of those systems could then be joined together loosely.

Of course, such computer systems require some kind of serialized access to disks and other such devices. This is
done by the Record Hold Table, which implements spinlocks for synchronization within the TPF OS nucleus. Of
course, the DASD controllers themselves had a record-locking facility, but one would have to get the LLF (Limited
Locking Facility) PRPQ or the ELLF (Extended Limited Locking Facility); these two were eventually replaced by
MPLF (Multipathing Lock Facility) which could use the Coupling Facility.

zZITPF: z/TPF 1.1 was released in September 2005; the new 64-bit support was nice, but the development model
changed drastically. Before z/TPF, one would cross-develop programs from MVS in assembly language (or a spe-
cialized language like SabreTalk); once z/TPF was released, this development model changed significantly. Instead
of the old development model in assembler, IBM provided a C-based development model derived from the GNU
development toolchain. IBM had spent much effort improving the quality of the s390x port of GCC (for z/Linux);
with these improvements available and TPF's development model decades obsolecent, IBM chose to make Linux the
development platform!

Programs that would run on z/TPF would actually be s390x-linux-gnu ELF files, either compiled on z/Linux or later
on PC Linux. If the programmer wishes to debug a TPF program, it is done so in a client-server fashion. TPF itself
doesn't come with a debugger, and the programmer has to go buy a third-party debugger (like CMSTPF, TPF/GI, or
ZTPFGI; alternatively, Step by Step Trace). IBM now provides a debugger, running on a PC workstation, called
TPF Toolkit -- this is a modified version of Eclipse (as IBM is known for doing).

TPF provides some basic operating system constructs for tasks like disk 1/0 and networking. TPF, naturally, sup-
ports both SNA and TCP/IP networking; likewise, CKD DASD disks and tapes are supported. The TPF operator's

TPF and ACP 115

console is a 3270 terminal called the prime CRAS (a strange acronym, standing for Computer Room Agent Set);
user terminals are local 3270 or local SNA 3270 terminals (both operating modes of a channel-attached 3x74).

Though | would love to write more, | do not have access to any TPF systems or install media for it, but | hope this
was an informative writeup on this strange OS.

116 Mainframe History

IBM 9370: DPPX/370

DPPX has an interesting history; the Distributed Processing Executive was first found on the IBM 8100 Information
System in 1978. In 1986, IBM eventually discontinued the decade-old 8100, and the last version was DPPX/SP
Release 4. Seeing the void, IBM ported DPPX to the System/370 in a rather interesting successful project: in 1988,
launching with the IBM 9370, IBM unveiled the 8100's replacement.

DPPX is, as having an interesting history, also has a rather odd architecture. The OS is written in a high-level-
language called PL/DS (PL/Distributed Systems), derived from PL/I. When DPPX was being ported to the 370,
PL/DS 2 also resulted; this was a necessary creation, since the PL/DS source for the 8100 was filled with inline
assembly and other such primitives.

Since DPPX was intended to be a distributed processing node on a network of more systems of its kind, the OS
was fully operable remotely (and could be ran without operator intervention). Likewise, the DPPX commands and
dialogs were fitted with extensive online help; the OS was certainly, for its time, extremely easy to use (compared
to something like VSE or MVS). Of course, these manuals were also available in print.

The original DPPX featured a key-lookup database, wherein a program could look up a record by providing a key.
At that point, the program can traverse through the database forwards... but not backwards. Since it took more CPU
time to run the query over then seek backwards to the right record given that key, application performance could
decrease quite a bit. DPPX/370 fixed this, but it was done in a rather odd fashion: since the DPPX DBMS provided
alternate keys, it would be possible for every key to have an alternate key that pointed to the previous record. The
program would then select the alternate key, which was just the binary 1's complement of the primary key. Reading
the next record in the returned data upon selecting that alternate key would read the previous record associated with
the primary key.

DPPX was a surprisingly complex system. The shell was the Host Command Facility (HCF), and the Distributed
HCF application allowed a user to remotely log into a DPPX/370 system through a teleprocessing network (inevi-
tably SNA; DPPX/370 never gained TCP/IP support). Much like CICS on MVS and VSE, DPPX/370 provided the
Distributed Transaction Management System (DTMS). The Distributed Systems Network Executive (DSNX)
allowed cross-system file sharing, something flashy and new in that era.

DPPX/370 also provided language compilers for languages besides PL/DS, those of which were COBOL and
FORTRAN. Applications written in any language that wished to provide full-screen user interfaces could use the
Command Facilities Extensions system, and users that wished to log into remote mainframes (of the 370 variety)
could use Data Stream Capability (which functioned somewhat like PVM's 3271/3274 emulation). Finally, there
was a Performance Tool to monitor the system's resource utilization.

IBM 9370: DPPX/370 117

Solaris on System Z

Coming soon!

118 Mainframe History

Popular Mainframe Programs

In this section, let us explore some of the more famous mainframe software products!

Customer Information Control System (CICS)

When it comes to most popular mainframe programs, CICS is easily a top 5. CICS is a transaction processing
system, wherein small programs are ran over and over (either under the control of a terminal or a network service
request); CICS also does file handling, terminal control, database manager access, and (later) web support.

History: CICS was written shortly after OS/360 became mature enough to host user-written (or, more accurately,
IBM-written) programs. It replaced an earlier program called the Minimum Teleprocessing Communications System
(MTCS) that was written to run under OS/MFT, OS/VS1, and DOS/VS. MTCS was not intended to be used for
high-volume transaction processing, and, as such, was entirely singlethreaded; an unofficial multithreaded version
was written by IBM Littlewoods, but this was made well after the heyday of MTCS (as a matter of fact, it was
intended to facilitate a MTCS-CICS bridge -- this was intended to be a migration path off of MTCS). MTCS
transactions were identified by 4-letter transaction codes, and the transaction code would be entered on a terminal
(originally a 2741, later 3270 displays near the end of MTCS's life) to initiate the program.

CICS was developed in conjunction with the Michigan Bell company starting in 1966 at IBM Des Plaines; the
original target market was the public utility industry. In 1968, IBM announced the first version of CICS: the Public
Utility Customer Information Control System, or PU-CICS. When it became apparent that this program would have
a userbase outside of public utility companies, the PU was dropped. This slightly-updated version was a program
product, and was released in conjunction with Information Management System (IMS) by July 8, 1969.

The basic gist of CICS was finished by 1969, but it didn't support much (for instance, it only supported 2741
typewriter terminals attached via a 2703). The first big adopter of CICS was Amoco (Standard Oil of Indiana), who
would eventually undertake rewrites of major components of CICS. Amoco had tons of Teletype 33 ASR terminals
attached to 2703 ASCII ports, but CICS didn't support non-2741 terminals initially; as such, programmers at IBM
Des Plaines tried to add support for popular third-party terminals of the day, but the team was handicapped by a
rather interesting limitation: they were so poorly-funded (they weren't funded at all, actually) that they could not
afford $100 a month to rent terminals to test. This was compounded by IBM management, constantly falsely stating
that batch processing was the future of computing and not timesharing/interactive systems/virtual memory (see the
aforementioned discussion around the failures of IBM there)!

Seeing that IBM was less than helpful, the Amoco programmers opted to make the support improvements happen
themselves. They found out that after starting CICS with IBM's untested non-2741 terminal support, OS/360 would
just crash. As a response, Amoco programmers had to rewrite the CICS Terminal Control Program!

CICS was eventually handed off to IBM Palo Alto, but it was seen as a smaller and less-important product than
IMS; by then, IMS had a transaction monitor, database manager, and things of that nature -- it was certainly more
technically-advanced than CICS, but not everyone wished to adopt it (and many stuck with CICS, even to this day).
IBM chose to actually end CICS development in 1974 and tried to get everyone to move to IMS, the IBM Hursley
site (over in England) took over development. They had just finished developing the PL/l compiler (only to kick it
off to some other IBM office) and were therefore familiar with many of the CICS customers (due to most CICS
customers writing transactions in PL/I and COBOL).

By 1972, there were three versions of CICS available:
e DOS-ENTRY: intended to run on DOS/360 machines that did not have much memory
e DOS-STANDARD: intended to run on DOS/360 machines that had more memory (and could support applica-
tion development)

Popular Mainframe Programs 119

e OS-STANDARD: intended to run on the large OS/360 machines

CICS was updated gradually over time with several other versions; the DOS/360 versions of CICS ultimately
evolved into two major releases of CICS:

e CICS/VSE, the traditional CICS version for VSE/SP and newer versions
e CICS Transaction Server for VSE, used to support CICS/ICCF on versions of VSE starting with VSE/ESA V2

The MVS CICS versions progressed through various versions, and were updated to support virtual storage on
OS/VS2 (CICS/VS), updated for MVS/XA (CICS/MVS), and enhanced for MVS/ESA (CICS/ESA). When 0S/390
was released, CICS/ESA became CICS Transaction Server, a name that sticks to this day with z/OS. When z/OS
did come out, CICS was updated to support 64-bit programs.

Other CICS Versions: There were a number of spin-off versions of CICS, including:

e CICS/VM: released in 1988, this was intended to provide a CICS analogue for VM/CMS systems. This was not
a real CICS subsystem, and was instead a series of libraries that would run alongside normal CMS program
modules. This was intended to be a simplified environment for converting CICS transactions over to interactive
CMS programs.

e CICS for Windows NT and OS/2: intended for application development and small customers, these programs
were remarkably similar and supported a client-server communication model (wherein CICS clients provided
3270 displays to the CICS system; users could also use TN3270 clients). VSAM file support was provided by
Btrieve, and it fully worked with Db2 connections.

e CICS for AIX, HP-UX, Solaris, and DIGITAL UNIX: a UNIX conversion of the CICS/NT and CICS/2 pro-
ducts, these products were intended to be a step-up from the PC-based editions. The same client-server and
Db2 support was present.

e TXseries, the updated name for the above two programs

e CICS/400, a full CICS subsystem for OS/400 (IBM i) that interoperated with the inbuilt OS/400 database
(sometimes called Db2/400, even though OS/400 itself was a database manager). Users would open CICS ses-
sions by running the STRCICS CL command.

120 Mainframe History

***DFH2312 WELCOME TO CICS/VS %% 19:24:44

ccccce ITIII ccceec SSSSSS VVVV VVVV SSS
CCCCCCCC IIIIT cccccccc SSSSSSSS VvV VvV SSSSS

cccc cc ITI CCCC CC SSSS SS VVV VvV SSSS

ccc ITI ccc SSSS xHKk VVV VvV SSSS
cccC ITI ccc SSSS *kk VVVVVV SSSS
cccc ccC ITI cccC C€c SS SSSS VVvvv S§S SSSS

CCCCCCCC IIIIT CCccccCC SSSSSSSS VVVV SSSSSSSS

cccece ITIII ccceec SSSSSS VvV SSSSSS

Figure 40. CICS/VS 1.7.0 welcome screen (MVS/SP 1.3.4)

WELCOME TO CICS 18:26:37

Kkkkhk\ kkkxak\ kkkkkx\ **xkxx\ (R)

2 A AN T T L T AW AN

FE\NNNxE\ A\ s\ N\ e\ s\ N\ e\
LA W AU A W A O A N A WA

*%\ *%\ *%\ Fkkkkkx\
*%\ *%\ *%\ FkkkK kx|
*%\ *%\ *%\ A **\

LA 2 N A AN 2 W A
2 A A T T AN T T T TN
B A AN T T T AR T AN

LANS A T A R A A A T AR A R A TR R AR AN

Figure 41. CICS TS 3.2.0 welcome screen (z/OS 1.5)

Popular Mainframe Programs 121

VSE/ESA CICSOLD 00:

ccc ITII
cccce IT
CC CC IT
cC IT
cC II
cC CC IT
cccec IT

cccC ITII

Figure 42. CICS/VSE 1.2 welcome screen (VSE/ESA 2.1.0)

VSE/ESA ONLINE 00:2

25:59
ccC SSS Vv vvv SSS
CCCCC SSSSS Vv Vv SSSSS
cC CC SS SS VW vw SS SS
cC SS *kk VW W SS
cC SS *kk VWooow SS
cC cC SS SS A SS SS
CCCCC SSSSS A SSSSS
ccc SSS) SSS

7:45

Kkkkhk\ kkkxak\ kkkkkx\ Fkkkkk\

2 A AN T T L T AW AN

T A LR P R i

T T R NPT

*%\ *%\ *%\ Fkkkkkx\

*%\ *%\ *%\ FkkkK kx|

e\ o\ W\

LA 2 N A AN 2 W A

2 A A T T AN T T T TN

B A AN T T T AR T AN
LRSS AN AR A A AR AR RN N ML T™

Figure 43. CICS TS 2.3 welcome screen (VSE/ESA 2.4.0)

122 Mainframe History

EEEEEEE
EE EE
EE
EEEEE
EEEEE
EE

EE EE
EEEEEEE

#H###d4e AAAFAAEHAA #H#### #H####
#E#FFFEE REAFFERRRAE RS #E#####
#H## #### #H#E AR AR
#H## A4 th##tAs HH##AAAA
#H## ### ### FHEHHHE A
HH#E A #EAEE HEEA
#E#EFEE REFAFFEE A #RE HEERE
####ddt A FAEEHAA ##### # ####

CICS for 0S/2 (*)
Version 3.1

94H5431(C) Copyright IBM Corp. 1988,1997. A1l Rights Reserved.
Portions (C) Copyright Pervasive Software Inc. 1997,1998.
A11 Rights Reserved.
(*) CICS and 0S/2 are trademarks of IBM Corp.

Enter to continue.

Figure 44. CICS for OS/2 3.1 welcome screen (OS/2 Warp 4)

Application Programming: CICS introduced a rather different method of application development. Initially,
CICS wused a library of assembler macros for calling CICS services. This was called Macro-Level
Programming.These looked like this sample assembler program that read a string from a terminal and then echoed
it:

Popular Mainframe Programs 123

COPY DFHCSADS COPY CSA AND TCA SYMBOLIC STORAGE DEFS
COPY DFHTCADS
LENGTH DS H
MESSAGE DS CL32
COPY DFHTCTTE COPY SYMBOLIC STORAGE DEFINITIONS
COPY DFHTIOA
MYSTR DS CL32
CICSTEST CSECT

BALR 2,0

USING =,2

L 11, TCAFCAAA SET UP TCTTE AND TIOA ADDRESSABILITY
L 10, TCTTEDA

MVC MYSTR,=C'ENTER TEXT TO ECHO'

MVC TIOATDL,=H'18'

DFHTC TYPE=(WRITE,READ,WAIT,ERASE)

L 10, TCTTEDA

MVC LENGTH, TIOATDL SAVE INPUTTED LENGTH

MvVC MESSAGE,MYSTR SAVE INPUTTED MESSAGE

DFHSC TYPE=GETMAIN,CLASS=TERMINAL,NUMBYTE=32 ALLOC MEMORY
L 10, TCASCSA

ST 10, TCTTEDA

MvVC MYSTR,MESSAGE MOVE INPUTTED STRING TO OUTPUT
MvVC TIOATDL,LENGTH MOVE LENGTH

DFHTC TYPE=WRITE WRITE STRING
DFHPC TYPE=RETURN EXIT PROGRAM
END

Figure 45. CICS macro-level sample program (assembler)

As you can see in the above example, there are a variety of macros for various functions, such as:

e DFHFC: file control

e DFHTC: terminal control

e DFHDI: batch data interchange

e DFHIC: interval control

e DFHKGC: task control

e DFHPC: program control

In addition, there are a variety of canned storage definition macros. Now, one might ask, what about COBOL and
PL/I? Well, these were supported, but it was extremely primitive. Note that COBOL does not have pointers like
PL/I does, so a COBOL CICS macro-level program would have to leverage the linkage section to actually do

anything. Note that the linkage section is normally used for communication between programs (like passing parame-
ters to subprograms), but this was crufty and unergonomic.

Examine the following COBOL program that does the same thing as the assembler program above:

124 Mainframe History

IDENTIFICATION DIVISION.
PROGRAM-ID. CICSMCRO.
ENVIRONMENT DIVISION.
DATA DIVISION.
LINKAGE SECTION.
01 DFHBLLDS COPY DFHBLLDS.
02 TCTTEAR PIC S9(8) COMP.
02 TIOABAR PIC S9(8) COMP.
01 DFHCSADS COPY DFHCSADS.
01 DFHTCADS COPY DFHTCADS.
02 SAVE-LENGTH PIC S9(8) COMP.
02 SAVE-MESSAGE PIC X(36).
01 DFHTCTTE COPY DFHTCTTE.
01 DFHTIOA COPY DFHTIOA.
02 TIOAMSG PIC X(36).
PROCEDURE DIVISION.
MOVE CSACDTA TO TCASBAR.
MOVE CSAOPFLA TO CSAOPBAR.
MOVE TCAFCAAA TO TCTEAR.
MOVE TCTEDA TO TIOABAR.
MOVE 'ENTER MESSAGE TO BE ECHOED' TO TIOAMSG.
MOVE 26 TO TIOATDL.
DFHTC TYPE=(WRITE,READ,WAIT)
MOVE TCTTEDA TO TIOABAR.
MOVE TIOATDL TO SAVE-LENGTH.
MOVE TIOAMSG TO SAVE-MESSAGE.
DFHSC TYPE=GETMAIN,NUMBYTE=36,CLASS=TERMINAL
MOVE TCASCSA TO TIOABAR.
MOVE TIOABAR TO TCTTEDA.
MOVE SAVE-MESSAGE TO TIOAMSG.
MOVE SAVE-LENGTH TO TIOATDL.
DFHTC TYPE=WRITE
DFHPC TYPE=RETURN
GOBACK.

Figure 46. CICS macro-level sample program (COBOL)

This is not very easy to use, but it was the price the programmers in the late 1970s paid. A PL/I program looks
similar:

Popular Mainframe Programs 125

CICSMCRO: PROC OPTIONS(MAIN,REENTRANT);
5INCLUDE DFHCSADS;
5INCLUDE DFHTCADS;
2 SAVE_LENGTH BIN FIXED(15);
2 SAVE_MSG CHAR(36);
5INCLUDE (DFHTCTTE);
5INCLUDE (DFHTIOA);
2 TIOAMSG CHAR(36);
TIOAMSG = 'ENTER MSG TO BE ECHOED';
TIOATDL = 26;
DFHTC TYPE=(WRITE,READ,WAIT) TIOABAR=TCTTEDA;
SAVE_LENGTH = TIOATDL;
SAVE_MSG = TIOAMSG;
DFHSC TYPE=GETMAIN,NUMBYTE=36,CLASS=TERMINAL

TIOABAR = TCASCSA;
TCTTEDA = TIOABAR;
TIOAMSG = SAVE_MSG;
TIOATDL = SAVE_LENGTH;

DFHTC TYPE=WRITE;
DFHPC TYPE=RETURN;
END;

Figure 47. CICS macro-level sample program (PL/I)

This is certainly more readable than the COBOL version, but this is still extremely cumbersome to write. As one
might imagine, this would eventually be replaced: this came with an update produced in the early 80s, and was
known as Command-Level Programming.

Rather than manually calling macros from high-level languages or writing the program entirely in assembler,
command-level programs would use a variety of EXEC CICS statements -- these would, in turn, be processed by
some kind of precompiler (which one was invoked depended on the language being used). The result of this was
that application development time fell significantly, as did user complaints.

Examine the following sample COBOL program:

IDENTIFICATION DIVISION.
PROGRAM-ID. CICSHI.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 WS-MESSAGE PIC X(40).
01 WS-LENGTH PIC S9(4) COMP.
PROCEDURE DIVISION.
BEGIN.
MOVE 'HELLO MVS CICS!' TO WS-MESSAGE
MOVE 15 TO WS-LENGTH
EXEC CICS SEND TEXT
FROM(WS-MESSAGE)
LENGTH (WS-LENGTH)
END-EXEC
EXEC CICS RETURN
END-EXEC
STOP RUN.

Figure 48. CICS command-level sample program (COBOL)

126 Mainframe History

To translate this program, you would pass it through the DFHECP1$ program. The other translators are:

» Assembler: DFHEAP1$
e C: DFHEDP1$

e COBOL: DFHECP1$

e PL/I: DFHEPP1$

To run these procedures, one could do it by hand or by using a stored procedure that came with CICS. There were

many of these, and they were as follows:

Table 11.
Language Non-LE LE
Assembler DFHEITAL (online), DFHEXTAL | (none)
(batch)
C DFHEITDL (online), DFHEXTDL | DFHYITDL (online),
(batch) DFHYXTDL (batch)
C++ (none) DFHYITEL (online), DFHYXTEL
(batch)
COBOL DFHEITVL (online), DFHEXTVL | DFHYITVL (online),
(batch) DFHYXTVL (batch)
PL/I DFHEITPL (online), DFHEXTPL DFHYITPL (online), DFHYXTPL
(batch) (batch)

After the program was translated, compiled, and linked, it would need to be defined to the system. This was con-
ventionally done in the past by updating the DFHPCT (program control table, which defines transactions) and
DFHPPT (processing program table) and re-assembling it. By 1985, online resource definition was now possible;
one could run the CEDA transaction and define the transaction.

Another useful feature for application development was a function known as Basic Mapping Support (i.e. BMS).
This was an assembler-macro way of defining panels. CICS BMS maps were always cumbersome, obtuse, and best
left generated by some kind of generator; the most common generator was IBM Screen Definition Facility 11 (SDF

I1), popular on MVS and VSE.

Here is an example CICS BMS map source:

Popular Mainframe Programs

127

PRINT ON,NOGEN
LOGPNL DFHMSD TYPE=MAP,LANG=C,FOLD=UPPER,MODE=INOUT,STORAGE=AUTO,
SUFFIX=
LOGMENU DFHMDI SIZE=(24,80),MAPATTS=(COLOR,HILIGHT),COLUMN=1,LINE=1,
DATA=FIELD,TIOAPFX=YES,0BFMT=NO
DFHMDF POS=(1,1),LENGTH=1,ATTRB=(PROT,BRT)
DFHMDF POS=(1,76),LENGTH=4,INITIAL="LOGM',ATTRB=(PROT,BRT),
COLOR=PINK
DFHMDF P0S=(2,30),LENGTH=23,INITIAL="'LogManager370 Main Menu',
ATTRB=(PROT,BRT) ,COLOR=YELLOW
DFHMDF POS=(6,3),LENGTH=1,INITIAL="1"',ATTRB=(PROT,BRT),
COLOR=NEUTRAL
DFHMDF P0S=(6,9),LENGTH=22,INITIAL="Add entries to Togbook',
ATTRB=(PROT,BRT) ,COLOR=TURQUOISE
DFHMDF P0S=(8,3),LENGTH=1,INITIAL='2"',ATTRB=(PROT,BRT),
COLOR=NEUTRAL
DFHMDF P0S=(8,9),LENGTH=25,
INITIAL='Update entries in logbook',ATTRB=(PROT,BRT),
COLOR=TURQUOISE
DFHMDF P0S=(10,3),LENGTH=1,INITIAL="3"',ATTRB=(PROT,BRT),
COLOR=NEUTRAL
DFHMDF P0S=(10,9),LENGTH=27,
INITIAL="'Remove entries from logbook',ATTRB=(PROT,BRT),
COLOR=TURQUOISE
DFHMDF P0S=(12,3),LENGTH=1,INITIAL="4"',ATTRB=(PROT,BRT),
COLOR=NEUTRAL
DFHMDF P0S=(12,9),LENGTH=24,
INITIAL="'Query logbook statistics',ATTRB=(PROT,BRT),
COLOR=TURQUOISE
DFHMDF POS=(14,3),LENGTH=1,INITIAL='5",ATTRB=(PROT,BRT),
COLOR=NEUTRAL
DFHMDF P0S=(14,9),LENGTH=34,
INITIAL="'Generate ADIF and store to dataset',
ATTRB=(PROT,BRT) ,COLOR=TURQUOISE
DFHMDF P0S=(16,3),LENGTH=1,INITIAL="6"',ATTRB=(PROT,BRT),
COLOR=NEUTRAL
DFHMDF P0S=(16,9),LENGTH=4,INITIAL="Help',ATTRB=(PROT,BRT),
COLOR=TURQUOISE
DFHMDF P0S=(18,3),LENGTH=1,INITIAL="'7"',ATTRB=(PROT,BRT),
COLOR=NEUTRAL
DFHMDF P0S=(18,9),LENGTH=4,INITIAL="Quit"',ATTRB=(PROT,BRT),
COLOR=TURQUOISE
DFHMDF P0S=(22,1),LENGTH=11,INITIAL='0Option ===>',ATTRB=(PROT,
BRT) ,COLOR=GREEN
* CHOICE CHOICE
CHOICE DFHMDF POS=(22,14),LENGTH=1,ATTRB=(UNPROT,NORM),COLOR=BLUE,
HILIGHT=UNDERLINE
DFHMDF P0S=(22,16) ,LENGTH=1,ATTRB=(PROT,NORM)
DFHMDF POS=(24,2),LENGTH=6,INITIAL="'F3=End',ATTRB=(PROT,BRT),
COLOR=BLUE

Figure 49. CICS BMS map sample

*

*

* F * * F * * % * * * * *

*

* * * *

* *

*

When assembled and displayed by a program using the EXEC CICS SEND MAP command, it looked like this:

128 Mainframe History

LogManager370 Main Menu

1 Add entries to logbook

2 Update entries in logbook

3 Remove entries from logbook

4 Query logbook statistics

5 Generate ADIF and store to dataset
6 Help

7 Quit

Option ===>

F3=End
Figure 50. Sample CICS map displayed on a 3270 terminal

Of course, CICS maps were dependent on the device. CICS supported many terminals in its day, some of which
weren't really traditional terminals (like supermarket barcode scanners, RJE batch terminals, an audio response
phone communication device, and other such strange devices).

Modern Features: Over the course of the 90s and 2000s, CICS gained many features that modernized it. These
included the ability to call CICS services from Java applications (all the rage in the late 90s), REST API support
(critical for the modern age), and a full CICS Web subsystem that permitted a CICS region to function as a web
server or web client.

The web service functions are achieved through a tapestry of configuration options, and is certainly more than
meets the eye at first. For example, one can first prepare CICS to receive web client connections by definining a
TCPIPSERVICE, then give it a URIMAP to build a list of URLs, then either allow it to serve static content from
z/OS UNIX files or generate dynamic content programmatically. If that seems too basic, CICS can also dynamically
generate HTML forms from BMS maps (like those described above).

CICS Applications: While there are more CICS applications that exist than | could ever readily compose a
writeup for, here are some influential early ones:

e Source Program Maintenance Online IlI: SPMOL-II (with the worst verbal name ever, “spimoli”) was a
circa-1970s online editor program that ran within CICS. Since OS/VS1 did not run TSO, SPMOL-II provided
the only good interactive editing facility that OS had; the slated purpose of this program was not for general
text editing but explicitly for the development and maintenance of source programs (as the name might imply;
put simply, this was written to be an online editor for COBOL, PL/I, and facilitate the submission of JCL
directly into the JES2 INTRDR in lieu of a card deck).

e STAIRS

e ATMS IlI: an online administrative document processing subsystem, ATMS evolved from the earlier ATS/360
(Administrative Terminal System) and was designed as a successor to it that ran under CICS (instead of doing
everything itself: ATS/360 did all disk I/O by directly executing channel programs). To facilitate the formatting
of documents, IBM SCRIPT/VS ran under ATMS Il and could save to files and/or spool to printers.

Popular Mainframe Programs 129

e GDDM: while not strictly a CICS program, the Graphical Data Display Manager provided graphics support for
3270 terminals that supported graphics as well as a whole barrage of AFP and similar (like PostScript) printers.
The base GDDM applications minus GDDM-OPS (the Online Presentation System), as well as most user-
written programs, could run under CICS.

GDDM

The blurb directly above this describes GDDM in passing, but the Graphical Data Display Manager provided a true
graphics subsystem for the mainframe. Gone were the days of text-only graphics and printouts, this new program
from 1988 made everything much more colorful and artistic. There were a number of programs shipped with a full
installation of GDDM:

Base GDDM components: The basic GDDM package contained a series of library routines,
copyfiles/headers/macros, and examples for various programming languages. One of those was the GDDM-REXX
interface, which expedited application development. GDDM applications could be written pretty easily by using
simple commands not unlike the commands for graphics seen on old 8-bit home computers that ran BASIC from a
ROM; this example C program would draw a basic screen and capture mouse input from the light pen (or mouse, if
displayed on a 3270 emulator like PCOMM):

#include <stdio.h>
#include <stdlib.h>
#include <gddm.h>

int main() {
int dtype, devid, segid, symbid;
fsinit();
gssati(1,1);
gsseg(5);
gscm(3);
gsch(10.0, 10.0);
gsmove (1.0, 90.0);
gstag(1);
gschap(1, "#");
gstag(2);
gschap(2, "#");
gsenab(3, 1, 1);
gsread(1, &dtype, &devid);
gsenab(3, 1, 0);
gsqpik(&segid, &symbid);

fsterm();
printf("picked segment id: %d, symbol id: %d\n", segid, symbid);
return 0;

}

Figure 51. GDDM C program that draws a demo menu

(thanks Vinatron for the program)

As one might imagine, GDDM found itself used for many programs that required any and all graphics!
GDDM-ICU: The ICU, or the Interactive Chart Utility, provided a simplistic way of generating charts on a
mainframe. Data can easily be imported and exported in a simple tabular format (and, of course, edited on the spot).

All manner of standard charts were supported, and this program was often used in conjunction with a page printer
(loaded with transparencies) to produce presentation slides.

130 Mainframe History

Charts would often look something like this:

PWM and ADC scope

304
25
20
- ADC?%
154
- PWM%Z
WOH—‘—\/./-—‘—/\-\'—‘—‘
54
0 T T T T T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 52. GDDM-ICU chart

GDDM-IVU: Intended to work with the 3193 portrait display and scanner, the Image Viewer Utility provided a
scanner and image display utility for ADMIMG-format pictures. Since no printer natively supported ADMIMG files
and one might wish to preview monochrome graphics for inclusion in DCF/BookMaster documents later, this
program can load and save AFP page segment files.

GDDM-OPS: In the past, Microsoft PowerPoint was not really a thing; as such, producing slides for a presenta-
tion was much more difficult. Originally, presentation slides were hand-drawn or hand-typeset directly onto trans-
parency slides, but these were not the same as the presentations we would later come to see dominate every
business meeting ever -- producing printed text was a rather cumbersome ordeal, and usually involved expensive
typesetting equipment and the like. Certain people realized that you could use graphics systems from television to
produce slides, but they were of poor resolution (since television was limited to about 480 lines in this era);
Genigraphics was the first to produce a widely-adopted computer whose job was graphic design (and these were
quickly used to produce presentation slides onto transparencies).

In the mid-80s, IBM decided they would try to take their hand at producing a competitor to the popular
Genigraphics computers. IBM had already been working on GDDM (as seen above), and some 3270-compatible
terminals (and, of course, PCs running 3270 emulators) could drive “video projectors” to illuminate a projection
screen.!

GDDM Online Presentation System leveraged the then-new advanced graphics features of the 3270 line (see the
section in the first half of this book on the 3179-G) to render beautiful presentation slides for display on a terminal,
printing with a printer (this output could then in-turn be photographically transferred onto slides), or on several
terminals (provided that OPS was being ran on VM). OPS supported MVS and VM, and used a rather odd
command language:

1 A video projector is what we would nowadays refer to as just a “projector”; this is in contrast with a film projector or slide
projector, which were more common in the mid-to-late 80s

Popular Mainframe Programs 131

Jops prefix !; reset; trc off

)ops dark; aspect 100 67; reset

I * draw the red line

MTine 2 65.4 83 w 1.2 dr r

Imix on

Irays 88 62.5 7 dr r

'rays 92 62.5 7 dr g

'rays 96 62.5 7 dr b

Itext 'z/0S' cc 92 62.5 ss admuukso h 5 sh 15 col w

Imix off

I * The next 1ine is the chart heading. Uses admuuhi as the symbol set
! * is drawn in red, with a height of 7.8.

Itext 'Objectives' 1 57.0 ss admuuhi col r h 7.8

I x set the symbol set, color and height for the bullet text
Iss admuuh; col y; h 5

I » start the bullets at x=6, y=47

Istart 6 47

I * ensure text wraps at edge

1tf xmax 95

I * start the 'unordered Tist'

1tful psp .41

! = and now the bullet text. add/delete bullets as necessary
1tf1i Figure out how to run SQL statements

1tf1i Write a program

1tf11 Precompile/compile/link/bind/run it

1tf1i Show interactive and batch program prep

1tf1i Memorize JCL

1tf1i Write CICS and Db2 application

Itfeul

Figure 53. Example GDDM-OPS presentation

When processed, OPS presentations could look like this:

132 Mainframe History

e oy

gl

4

DAILY HOURS OF SUN

Sy

NN
S ————

S

S

S
SN

2

MIAMI
2] HONG
& KONG

SN

RN

[

S

e
Sy

=

NS
w

e

R

..

S

R

=

B

O - N 4 & O O N ® ©
ST A SR A M S ST M M |

/.

7

i,

Figure 54. GDDM-OPS presentation (extracted using GDFSAVE)

i i B

OPS stopped being updated in 1993 as Microsoft PowerPoint displaced it (and other earlier presentation packages,
like Harvard Graphics on MS-DOS), but it continued to be available in most GDDM installs (and is even still
available to this day).

Usage requires either a real 3270 terminal with vector graphics support, or a 3270 terminal emulator with graphics
(out of the scope of this document, but IBM Personal Communications i.e. PCOMM is ideal).

GDDM-ISE and GDDM-VSE: Not to be confused with the operating system of the same name, the Vector
Symbol Editor is used to create custom vector symbols (i.e. vector fonts) and the Image Symbol Editor is used for
creating bitmapped fonts. These can be used by user-written GDDM programs, GDDM-OPS, or GDDM-ICU.

SCRIPT/VS

SCRIPT is a program derived from one of the earliest programs ever written for a computer: RUNOFF. This was a
program that ran on, of all platforms, CTSS; it provided a basic text formatting function that pagination and justi-
fication. The original RUNOFF was written in MAD in 1964; by 1967, it had been rewritten in BCPL and was
bought over to Multics.

In 1968, at the peak of CP-67's development at Lincoln Labs, IBM contacted Stuart Madnick (at MIT) to produce a

simple document formatter that would run under CP-67's CMS. This program was modelled by its author after the
CTSS RUNOFF program (seeing that CTSS and its popular programs were a memory still hot on the mind of the

Popular Mainframe Programs 133

early CP-40 and CP-67 users/developers), and was compatible. Since this was the late 60s and early 70s, this
version of SCRIPT was not terrifically useful; it supported typewriter terminal and line printer output only.2

This program was ported over to OS/VS TSO; this version was ported by William Dwyer (Yale University) in
1974. Shortly thereafter, several students at the University of Waterloo became disappointed by the lack of features
afforded to them by this NSCRIPT program, and rewrote it as Waterloo SCRIPT (i.e. WSCRIPT).

WSCRIPT would continue to be updated, and worked on MVS, CMS, and MUSIC -- the MUSIC version was used
to format the manuals for that operating system into PDFs (by way of outputting PostScript).

What is more interesting is IBM's development of SCRIPT. By 1978, their own rewrite of SCRIPT had been
updated so substantially that it began to gain support for more and more line printers -- it had gained the ability to
output a FORTRAN carriage control listing, which permitted the printing of various paper sizes, bold and under-
lined text, and strikeout text. This program was renamed to the Document Composition Facility, and it ran under the
big three mainframe OSes (MVS, VM, VSE).

DCF supported the then-new IBM 3800 Printing Subsystem (which introduced a greatly-advanced printer data
stream); in the mid-80s, DCF 3.0 gained support for the newly-introduced Advanced Function Printers (the most
popular of which was the IBM 3820) which supported full graphics printing!

SCRIPT was used with several custom macro packages, but IBM put out two major ones:

e GML (Generalized Markup Language) Starter Set

GML is an interesting language, because it is the direct source for SGML (Standardized GML) and, by exten-
sion, XML and HTML! The GML package that came with DCF was called the GML Starter Set, and it
included a large library of macros for automating the production of various document elements (title pages,
tables of contents, footnote lists, etc).

e BookMaster

BookMaster, of which this document is actually composed in, is a superset of the GML Starter Set macros that
may or may not be used in conjunction with BookManager, a program used to produce online books that
could either be printed (of course, by running the input source straight through DCF/SCRIPT with BookMaster
installed) or displayed online with a 3270 terminal! BookManager and BookMaster are technically two different
programs, but are heavily related on account of this.
Over the years, IBM DCF/SCRIPT gained support for quite a number of output devices, including:

e Terminals: 3270 and 2741

e Line printers: 1403, 3800 (a laser printer, but treated like a line device in this mode)

e AFP page printers: 3800-3, 3820, 4250, 3812, 4224, 4028

e PostScript printers

All of these output devices had several variations for several paper sizes.

OfficeVision/VM

Note: before reading this, read the PROFS section in the VM chapter!

2 Typewriter terminal output would have been done likely on an IBM 2741-style terminal; you would eject your cheap paper
used for your login session, load some nicer paper, hit enter at the prompt after invoking SCRIPT that prompted you to load
that paper, and wait on the printout to grow.

134 Mainframe History

OV/VM 1.1 and 1.2: OfficeVision/VM was an evolution of PROFS, but intended to function alongside PCs.
When OV/VM 1.1 was announced on May 16 of 1989, PCs running DOS (and sometimes OS/2) were in plentiful
supply -- these usually ran some kind of host connection program like Communications Manager/2 or Personal
Communications, but could just as easily run a front-end to OV/VM. The “OS/2 Office Feature” provided this
feature on OS/2, and the DOS Office Direct Connect Feature provided it for DOS. OV/VM 1.1 included extended

Di
up

splayWrite/370 support, since it was presumed that this would be the dominant word processing system; it ended
indeed being the dominant document system for many businesses for quite a while!

PC users that needed to send a fax could use the Office Facsimile Application, but this program required an
external fax server in order to send and receive the documents.?

OV/VM 1.1 released in December 1989, and OV/VM 1.2 released in March 1990. Throughout its life, OV/VM
supported a number of extra programs:

DisplayWrite/370, a full-screen word processor that used RFT-format files*

AS (Application System), an application development and exeution engine sometimes used to write business
applications in the era OV/VM was popular

DCF (Document Composition Facility, i.e. SCRIPT), for formatting typeset documents without the usage of
DisplayWrite/370

ISPF/VM, used to display the OV/VM administration dialogs, some user panels (like the one used to generate
author profiles), the DOS Office Direct Connect dialogs, the Control File Aids (settings editors), and the
PROFS database split/merge/transfer functions.

RSCS, used for networking OV/VM systems together

Host-Displaywriter Document Interchange (HDDI), a program that converted DCF documents to and from RFT
format.

GDDM, if users wanted to store images in documents

OV/VM supported extensive inter-system communications with both RSCS support for email and remote calendars,

as

well as full APPC/VM support for remote calendars, mailboxes, and distribution managers.

3

4

In this era (the late 80s), modems that could send and receive faxes were extremely rare and expensive; it would not be till
the late 90s when every modem ever could do so

RFT is Revisable Form Text, and is unrelated to Microsoft's Rich Text Format (RTF); many PC word processors (including
WordPerfect, Microsoft Word, Ami Pro/Lotus Word Pro, etc) could load and save RFT files.

Popular Mainframe Programs 135

PF1
PF2
PF3
PF4
PF5
PF6
PF7
PF8

PF10
PF11

0fficeVision/VM Main Menu
Press one of the following PF keys.

Process calendars

Open the mail

Find documents

Process notes and messages

Prepare documents

Process documents from other sources
Process the mail log

Check the status of outgoing mail

Add an automatic reminder
View main menu number 2

5684-084 (C) Copyright IBM Corp. 1983,

1926
S M

3 4
10 11
17 18
24 25
31

1989

Time: 4:16 PM

JANUARY 1926

T W T F S
1 2

5 6 7 8 9
12 13 14 15 16
19 20 21 22 23
26 27 28 29 30
Day of Year: 011

PF9 Help PF12 End

AO

===>

Figure 55. OfficeVision/VM 1.1 Main Menu

PROCESS CALENDARS

Calendar for: System Administrator

Calendar date: 01/11/26

Press one of the following PF keys.

PF1
PF2

PF3
PF4
PF5
PF6
PF7
PF8

PF10

Work with the day's schedule

View 7 days of the calendar

View the conference room schedules
Work with the next day's schedule
Work with the previous day's schedule
View the month

Schedule a meeting

Print 7 days of the calendar

View calendar main menu number 2

PF9 Help PF12 Return
Figure 56. OV/VM 1.1 Calendar

136 Mainframe History

2026
S M

4 5
11 12
18 19
25 26

Time: 9:09 PM

JANUARY 20

T W T F
1 2

6 7 8 9
13 14 15 16
20 21 22 23
27 28 29 30

Day of Year:

LIST OF AVAILABLE DOCUMENT STYLES
Press the PF key for the document style you want.
PF1 STANDARD This is an RFT interoffice memo.
PF2 DISTLIST This is an RFT memo beginning with "To: Distribution".
PF3 BUSINESS This is an RFT formal letter to send outside your company
PF4 STANDDCF This is a DCF interoffice memo using the memo prompter.
PF5 DISTDCF This is a DCF memo beginning with "To: Distribution".
PF6 BUSDCF This is a DCF formal letter to send outside your company.
PF7 BLANK This is an empty RFT format file.

PF8 MEETING This is a DCF interoffice meeting notice.

Screen 1o
PF9 Help PF10 Next Screen PF11 Previous Screen PF12 Return
>

Figure 57. OV/VM Document Style Choice Menu

9 RFTD A5 PROMPT

** Prompt: Type addressee:

===>
<---t —--] -t -2 et -3 etV et - et b -t -7 >
--- Page
January 11, 1926 Draft 9

P. R. ADMINISTRATOR , 222-222-2222

LARGE CO.

TECHNICAL

BUILDING 55

WASHINGTON, DC 222222

SYSADMIN/VMESA12

Memo to:

Subject:

Reference:

PF 1=Block 2=Insert 3=Cmdline 4=Instr. 5=Tspell 6=Ai
PF 7=Next 8=Command 9=HELP 10=Forward 11=Backward 12=EN

Figure 58. OV/VM DisplayWrite/370 Memo Prompter
OV/I/VM 1.2 (April 24, 1992) added some pretty serious improvements; the most meaningful improvement was the

introduction of the new OVMAIL facility, a totally-rewritten user interface that greatly increased user productivity
with emails.

Popular Mainframe Programs 137

MLOO OfficeVision/VM Mail Items 1 to

Type / or an action next to an item and press Prompt or ENTER.

--Name-- --Type-- M- --Blocks-- --Date-- --------- Description------
In-basket

Non-0V/VM Mail

Document Log

Personal Storage is 01x full (8 of 900 blocks).

Command ===>

Fl=Help F2=Keys F3=Exit F4=Prompt F5=Refresh F6=TopBot F7=Backward
F8=Forward F9=Retrieve F10=Sort F1ll=Find F12=Cancel

Figure 59. OV/VM 1.2 OVMAIL Menu

ESA Calendar Feature: Before OfficeVision/VM Release 3 was announced and made available, an interesting
enhancement was made available in October 1993: the ESA Calendar Feature. This was a massive upgrade to the
earlier and more primitive OV/VM calendar (which had not meaningfully evolved since PROFS 2.11)! The product
announcement provides a rather quaint list of enhancements this new calendar had:

Improved calendar performance and capacity, especially related to the calendar search function; it was now
handled client-side (on the user virtual machine) in lieu of deferring the search operation to the calendar
manager service machine

Exploitation of VM Data Spaces, allowing for faster calendar operation if all of the calendar servers in a dis-
tributed arrangement (under one VM system) run with XC-mode CMS

Usage of 31-bit CMS addressing, permitting for calendars that may spill over 15 MB
Ability to use SFS for calendar storage, previously not possible with the earlier calendar
Allows for distributed calendar processing across several calendar servers

The protocol between the client and the server is now fully documented, allowing for all manner of custom
applications to be written

Supports a laundry list of network protocols:
- APPC/VM

- lucv

- RSCS

— CPI Communications

Backwards-compatible with earlier user-written (in assembler) OV/VM calendar exits

138 Mainframe History

One might ask why my description of this ESA Calendar Feature is so lengthy, and it is due to the obvious amount

of work that was placed into it: it is clear that a skunkworks group made this highly-advanced program!

CWoo

Process Calendars

Calendar for W. E. C

Select

1

CCLOOOI
Command
Fl=Help

CONOYOTL B WN =

. . . 01/11/26 Sunday
one of the following. Then press Enter. Time: 8:58 PM EST
Work with the day's schedule 2026 January 2026
View 7_ days of the calendar S M T W T F S
View the conference room schedules 1 2 3
Work with the next day's schedule 4 5 6 7 8 9 10
Work with the previous day's schedule 11 12 13 14 15 16 17
View the month 18 19 20 21 22 23 24
Schedule a meeting 25 26 27 28 29 30 31
Print 7 days of the calendar Day of Year: 11

. View the business week

. View six month calendar

. Manage list of authorized users
. Search facility

. Add company holidays

(C) Copyright IBM Corporation 1993. A1l Rights Reserved

===>

F2=0Options F3=Exit F10=Next month F11l=Previous month F12=Cancel

Figure 60. OfficeVision/VM 1.3 ESA Calendar Feature

CallUp: An aptly-named program, CallUp was a phone directory program that was very often seen alongside
OV/VM. Some of the very large OV/VM systems made heavy use of CallUp, and IBM themselves used it for far
longer than most people would consider its useful life to be!

Popular Mainframe Programs

139

File Distribute Inquire Options Help

Search Request

To request a search, type the search data and press Enter.
Lines 1 to 14
Corporate and Personal Directories
Name
Search Location(s) . . =SAMPLE
Department
User ID
Node ID

Manager 1. Yes

Telephone Extension . .
Additional Data

Services Directory
(C) Copyright IBM Corporation 1988, 1992. All rights reserved.
Command ===>
Fl=Help F2=Set 2 F3=Exit F4=Profile F5=Refresh F6=Fuzzy search
F7=Backward F8=Forward F9=Command F10=Actions F11=Dist Tist F12=Can

Figure 61. CallUp Main Menu
Release 3, 4, and the end: OV/VM 1.3 was announced on June 11, 1996, and included an updated ESA
Calendar Feature. This release was not very complex, but the following things were added:

e Usage of VMSES/E

e Retention Management System (old documents can now be auto-purged)

e Support for remote in-baskets and remote conference room scheduling added

e Added SMTP support

e Proofreading addeds

e Time zone support added to the ESA Calendar Feature

e OVMAIL facility now integrated into the base
OV/VM Release 4 (announced November 18, 1997) was the final version of the PROFS line, and the stated purpose
of this release was full Y2K compliance; in addition, numerable changes and enhancements were added:

e The OV/VM user code saved segment is now relocatable above 16 MB, allowing for the base OV/VM program
(and not just the ESA Calendar Feature) to feature full 31-bit addressing

e The user A-disks can now be in SFS (somehow, this was not permitted with older OV/VM releases); filesystem
permissions are fully integrated too

e The database/calendar/mailbox/distribution managers can now run arbitrary CMS commands from their consoles
¢ MIME emails are now supported when received through SMTP

e Users can now postpone (and save) a note, to work on it later

5 The OV/VM proofreader is derived from an IBM program that was never officially released called PROOF

140 Mainframe History

e The NOTIFY command has been improved
e The RECALL command has been improved (this command allows you to un-send mail)

e The OVMAIL note editor has been rewritten and substantially improved

Standalone Utility Programs

Throughout the history of mainframes, there were several notable standalone utilities used for maintaining the
system. Here is a selection of some of them:

Device Support Facilities (ICKDSF): Device Support Facilities (ICK is just the prefix) is a program that is
used to format and initialize DASDs. This program ran under MVS, VM, VSE, AIX/370/ESA, and possibly others;
Linux, Solaris, MUSIC, MTS, and TPF users would have to run the standalone version described here. This was
normally loaded from a tape, and it would wait for an interrupt from some kind of console/terminal device after
IPLing. You would do that by pushing an attention key on a 3270, 3215, or possibly others. Once the messages
appeared, you could use it.

ICKDSF was sometimes wrapped by a program called CPFMTXA on VM,; in the early days, this program was
called Format/Allocate.

ICKOO5E DEFINE INPUT DEVICE, REPLY 'DDDD,CUU' OR 'CONSOLE'
ENTER INPUT/COMMAND:

ICKOO6E DEFINE OUTPUT DEVICE, REPLY 'DDDD,CUU' OR 'CONSOLE'
ENTER INPUT/COMMAND:

ICKDSF - SA DEVICE SUPPORT FACILITIES 11.0B TIME: 1
11/20/25 PAGE 1

ENTER INPUT/COMMAND:
end
END

VM READ VMSP5

Figure 62. Standalone ICKDSF
VM Format/Allocate (DMKFMT): This program was used in the VM/370 era to, after initializing DASDs with
ICKDSF, would lay out the disks for VM CP. You would allocate the following kinds of space with it:

e PERM: used to store minidisks

e DRCT: used to store the system directory

e PAGE: paging space

e SPOL.: spooling space

Popular Mainframe Programs 141

e PARM: used to hold parm disks (VM/XA only, CPFMTXA)

This program was eventually replaced by a successor seen on VM/XA: CPFMTXA. This program was ran from
CMS, and did not run standalone; if you needed to perform these functions standalone, you would actually use
ICKDSF's CPVOL command!

In the VM/370 era, you would run this program (most likely) by IPLing it from a virtual machine's card reader with
the DASD you wished to format attached to said VM.

VM Standalone Directory Creation Utility (DMKDIR): This program does exactly what the name implies: it
loads from a card reader, and is followed by a deck containing a VM directory. This would be used during a
VM/370 or VMI/SP tailored installation procedure or cross-system generation, which would involve and necessitate
the creation of a system directory. The filename was “IPL DIR”

Standalone I/0 Configuration Program (SA IOCP): While not strictly a program one might would load from
a reader or something similar, the SA IOCP program is critical to any mainframe. Since mainframes since the
System/370 era (this list would include the 370/XA machines) no longer use a hardwired logic method of 1/0
configuration and channel assignment, it became necessary to define some kind of 1/0 configuration file. Naturally,
these looked something like this:

CHPID PATH=04,TYPE=CNC
CTLUNIT CUNUMBR=400,PATH=(04),UNIT=3990,UNITADD=((00,256),CUADD=0
IODEVICE ADDRESS=(400,16),CUNUMBR=400,UNIT=3390,UNITADD=0,STADET=Y

Figure 63. Sample IOCP definitions for a 3390

This snippet here does the following things per each line:
1. Defines an ESCON (CNC) channel on channel path ID 4.

2. Defines a 3990 (CKD DASD) control unit on CHPID 4 with 256 maximum devices attached to it. This CU is
at address 400.

3. Defines 16 3390 DASDs, starting at device address 400 (technically unrelated to the CTLUNIT's CU number),
attached to the controller with CU number 400 (that's the DEVICE -> CTLUNIT linkage).

In order to "cook" this into a working IOCDS dataset that the mainframe CPU loads during the power-on-reset
phase of the IPL, one must either run the IOCP programs on the various OSes (IOCP programs are known to have
existed for MVS/ESA, VM/ESA, VSE/ESA, and AIX/ESA, as well as their more modern counterparts), or run the
standalone IOCP!

The SA IOCP program is not loaded like a normal standalone program might be (like from a reader or a tape), but
instead loaded directly from the SE. Under CPC Customization, there is an option for configuring 1/O devices --
dragging the group icon onto that icon will open a dialog showing several options of known IOCDS datasets and
IOCS sources (an 10CDS is a “processed” version of an 10CS source file) and the option to edit an IOCS is
provided. After an edit, you would choose the option from the menu at the top left to build an I0CDS dataset.
Once that is done, the mainframe can be re-powered-on with the new I0CDS (since you are prompted which one
you want to load during the power-on procedure). The SA I0OCP program itself does run on the S/390 or System Z
CPU, but is stored as a memory image.

DASD Dump/Restore (DMKDDR): DDR is one of the classic programs seen from VM, and is often used by
systems programmers to migrate DASDs between system by way of first dumping them on tape. DDR is a simple
program that asks for an input and output device -- these devices can be disks or tapes. It can also copy DASDs by
specifying two DASDs for the input and output devices. Otherwise, it will dump to tape or restore from tape.

142 Mainframe History

The tape format can be one of the following options, all similarly-named:

e Mode Compacted (MODE COMP), wherein compression is done by the tape drive itself; this is the 3480 IDRC
or 3490E IDRC enablement option, but works for other tapes. This is specified on the output device like
“OUTPUT 590 3490 (MODE COMP.”

e Compacted, wherein DDR does software compression, specified before any MODE options with the COMP.

e LZMA compaction, wherein DDR uses the LZMA compression instruction of an S/390 G6 or newer -- this is
specified with the LZCOMP option.

ddr

VM/ENTERPRISE SYSTEMS ARCHITECTURE DASD DUMP/RESTORE PROGRAM
ENTER:

input 100 dasd

ENTER:

output 200 dasd

ENTER:

copy all

HCPDDR716D NO VOL1 LABEL FOUND

DO YOU WISH TO CONTINUE? RESPOND YES, NO OR REREAD:
yes

HCPDDR716D NO VOL1 LABEL FOUND

DO YOU WISH TO CONTINUE? RESPOND YES, NO OR REREAD:
yes

COPYING

END OF COPY

ENTER:

END OF JOB
PRT FILE 0220 SENT FROM WEC PRT WAS 0220 RECS 0006 CPY 001 A NOHOLD
Ready; T=0.01/0.10 10:50:51

VM READ EVIEVM
Figure 64. Example DDR run (copying a DASD)

OS DASD Initialization (IBCDASDI): Hailing from the OS/360 era, IBCDASDI was a much more cumbersome
way of doing tasks that would later be performed by ICKDSF. The input jobstreams were rather convoluted:

DINIT1 JOB 'INITIALIZE AN EXAMPLE DASD UNDER VM'
MSG TODEV=1052,TOADDR=009
DADEF TODEV=3380,TOADDR=100,IPL=NO,VOLID=TESTO1,BYPASS=YES
VLD NEWVOLID=TESTO1,0WNER=DEMO
VTOCD STRTADR=1,EXTENT=5
END

Figure 65. Example IBCDASDI jobstream
Naturally, one would need to IPL this program and tell it which input device to use with a terminal input like

“input=1442,00c.” After that, the program will read the above jobstream from the reader, and the initialization will
occur (hopefully).

OS Dump/Restore (IBCDMPRS): This program is very similar to the above IBCDASDI program,DMPRS was

always ran by MVS systems programmers to restore a starter system from tape to a temporary DASD such that they
could build the system. The input jobstreams looked like this:

Popular Mainframe Programs 143

DASD1 JOB 'RESTORE MVS STARTER SYSTEM SYSRES PACK'
MSG TODEV=1052,TOADDR=009
RESTORE FROMDEV=3400, FROMADDR=580,TODEV=3330, TOADDR=150,
VOLID=MVSRES
END

Figure 66. Example IBCDMPRS jobstream

Standalone Utilities (ZZSA): ZZSA is a program written by Jan Jaeger that provides an emergency rescue
environment and standalone fullscreen editor -- the only other real option for shops that broke their MVS install is
to be running it under VM, wherein they can use CMS's OS simulation to edit a probably-erroring PARMLIB
member. This program could IPL from a DASD, tape, reader, or VM saved segment (which is how the below
screenshots were captured), wherein it would present a 3270 user interface and an editor that is not unlike that of
ISPF's. With this, users could hopefully un-brick their mainframes.

ZZSAPRIM Stand Alone Utilities

Option ===>

0 ListDev - List all devices

1 Browse - Browse dataset or member Console 000
2 Edit - Edit dataset or member IPL Device 1?77
3 ListVTOC - List Volume Table Of Contents IPL CPU 000
4 ListPDS - List PDS directory CPU Version FF

5 DispVol - Display DASD volume Tlabel CPU Serial 010
6 Dump - Dump DASD record by CCHHR CPU Model 706
7 Zap - Alter DASD record by CCHHR Date (TOD) 22/
X Exit - Terminate program Time (TOD) 16:

Jan Jaeger - Version 12/07/9
Figure 67. ZZSA main menu

144 Mainframe History

ZZSABROW Device List

Command ===> Line 0000 Co
khkhkhkkkkkhkhkhdhdhhhhhkhkhkkhhkhdddhdhhhhrrrkkx Top of Data kkkkkhkhkhkhhhhkhkkhkkkhhkhkhdhdhhhhhkxx
SCH=0000 DEV=0009 CHP=00 C/T=3274-1D
SCH=0001 DEV=000C CHP=00
SCH=0002 DEV=000D CHP=00
SCH=0003 DEV=000E CHP=00
SCH=0004 DEV=0190 CHP=FD C/T=3990-E2 D/T=3390-0A VOL
SCH=0005 DEV=0191 CHP=FD C/T=3990-E2 D/T=3390-0A VOL
SCH=0006 DEV=0193 CHP=FD C/T=3990-E2 D/T=3390-0A VOL
SCH=0007 DEV=019D CHP=FD C/T=3990-E2 D/T=3390-0A VOL
SCH=0008 DEV=019E CHP=FD C/T=3990-E2 D/T=3390-0A VOL
SCH=0009 DEV=0370 CHP=FD C/T=3990-E2 D/T=3390-0A VOL
SCH=000A DEV=0CF1 CHP=FD C/T=3990-E2 D/T=3390-0A VOL
SCH=000B DEV=0CF2 CHP=FD C/T=3990-E2 D/T=3390-0A VOL
SCH=000C DEV=0123 CHP=FD C/T=3990-E2 D/T=3390-0A VOL
SCH=000D DEV=0124 CHP=FD C/T=3990-E2 D/T=3390-0A VOL
SCH=000E DEV=0125 CHP=FD C/T=3990-E2 D/T=3390-0A VOL
SCH=000F DEV=0126 CHP=FD C/T=3990-E2 D/T=3390-0A VOL
SCH=0010 DEV=0127 CHP=FD C/T=3990-E2 D/T=3390-0A VOL
SCH=0011 DEV=0128 CHP=FD C/T=3990-E2 D/T=3390-0A VOL
SCH=0012 DEV=0129 CHP=FD C/T=3990-E2 D/T=3390-0A VOL
SCH=0013 DEV=0194 CHP=FD C/T=3990-E2 D/T=3390-0A VOL

F3=End F5=RFind
Figure 68. ZZSA device list

F7=Up F8=Down F10=Left F11=Right

ZZSABROW VTOC listing VSAMO1(0100)
Command ===> Line 0000 Co

Fkkkkk kR Rk Rk R RR KRR R R R I Fxxkxxk TOp 0F Data *xdakddrkkdrkhdkhdhkhshkthrxhrk

79999992 .VSAMDSPC.TE1F9DC4.T9B02555 DSORG=VS RECFM=7??? BLKSIZ
29999996 . VSAMDSPC.TELF9DBB.TED3F3A5 DSORG=VS ~ RECFM=7??? BLKSIZ

kkkkhkkhkkhkkhkkhkkkkhkkkkkxkxkxx* Bottom Of Data #****kkxkkkkxkkkhkhrkkhrkhrs

F3=End F5=RFind
Figure 69. ZZSA dataset list

F7=Up F8=Down F10=Left F11=Right

Alas, no mainframe is without it!

Popular Mainframe Programs

145

Afterword

I have composed this to, the best of my ability, to be as accurate as | can make it. | have composed this since the
2nd of August to be the ultimate reference or the mainframe hobbyist community; | hope that this is sufficient and
brings people some fun and insightful knowledge!

146 Mainframe History

Index

Numerics
1052 20
1403 17
1404 17
1442 21
2216 24
2260 28
2265 29
2848 29
270x
2701 26
2702 27
2703 27
2712 27
AWS2703 27
9370 ASCII Subsystem 27

4331/4341/9370 Telecommunications Subsystem

(ICA) 28
AWSICA 28
2770 39
2780 39
2821 17
3088 22
ESCON/FICON CTCA 22
Parallel CTCA 22
3172 23
CLAW mode 24
WAC (WAN Adapter Card) 24
3203 18
3210 20
3215 20
3211 18
3262 19
3270 Display System
Controllers
3174 32
3271 30
3272 30
3274 30
3299 35
Terminals
3104 38
3178 37
3179 37
3180 37
3191 37
3192 38

3270 Display System (continued)
Terminals (continued)
3193 38
3194 38
3277 35
3278 36
3279 36
3290 37
3472 38
CUT/DFT mode 35
Printers
3501/3521. 21
3505/3525 21
3618 18
3705 29
3710 29
3725 29
CCL (Communications Controller for
Linux) 30
EP 29
NCP 29
PEP 29
3780 40
4245 19
4248 19
5262 19
6262 20
8232 (LCS) 22

B

BOS/360 42
BPS/360 42

C
CICS
History 119
MTCS 119
Programming 123
Command-level 126
Macro-level 123
Versions 120

D

Disks
0671 10

Index

147

Disks (continued) G

;ggé g GDDM 130
2311 9 GDDM-ICU 130
2314 9 GDDM-ISE 133
2319 9 GDDM-IVU 131
3310 10 GDDM-OPS 131
3330 9 GDDM-VSE 133
3340 10
3350 10 I
3370 10 IX/370 (IBM) 110
3375 10 AIX/370 111
3380 11 AIX/ESA 112
3390 11
9332 10 L
0w 1 T
Linux/370 (Bigfoot, i370) 101
9345 11 .
. INS file 101
DS line .
DS6800 13 _Kernel command line 101
DS8100 13 Linux/390 (IBM, s390) 104
DS8800 13
ESS/Shark (Enterprise Storage Server) 12 M
MP2000 disk array 11 MTS 69
MP3000 disk array 12 Communication Controller (CC) 71
RAMAC/RAMAC Il 11 MERIT Network 72
VSS (Versatile Storage Server) 12 PCP/SCP 72
DOS/360 44 CONCOMP 70
POWER 44 UMMPS 69
TOS/360 44 MUSIC 66
DOS/VS 44 Email system 67
DOS/VSE 44 Filesystem 66
SSX/VSE 45 MUSIC JCL 67
VSE Products Networking facilities 67
CICS/DOS/VS 45 OS emulator 67
DITTO 45 MVS/ESA 58
VSE ACF/VTAM 45 OpenEdition 58
VSE/ICCF 45 Version 3 58
VSE/POWER 45 Version 4 58
VSE/AF 45 Version 5 59
VSE/SP 45 MVS/XA 57
DPPX/370 117
@
E OfficeVision/VM 135
Emulators Callup 139
FLEX-ES 7 ESA Calendar Feature 138
Hercules 8 Open Systems Adapter
TurboHercules 8 ICC (Integrated Console Controller) 26
ZPDT 7 OsSD 25
ZD&T 7 OSE 25

zPDT Enterprise Edition 8

148 Mainframe History

Open Systems Adapter (continued)
QDIO 25
0S/360 51
MFT 51
MVT 51
ASP 52
HASP 52
TSO 52
PCP 51
0S/390 59
Version 1 59
0OS/VS1 53
BPE 53
OS/VS2 54
SVS 54
Link Pack Area 54
0OS/VS2 MVS 54
MVS 3.8] 56
MVS/SE 55
MVS/SP 55

P
PC mainframes
P/390 6
S/390 Integrated Server (3006) 6
VM/SP Technical Workstation (7437) 5
P/370 6
XT/370 5
AT/370 5

R

RAX 66
RJE (Remote Job Entry) 39

S

SCRIPT 133
BookMaster 134
DCF/SCRIPT 134
GML 134
Waterloo SCRIPT 134

System Z 6
System z12 6

z12BC 6

Z12EC 6
System z13 6
System z14 7
System z15 7
System z16/Telum 7
System z17/Telum Il 7

System Z (continued)
System z9 6
System z10 6
ZAAP 6
zIIP 6
zEnterprise 6
z114 6
z196 6
System/360 2
DAT Box (360) 2
Model 67 2
System/370 2
3033 3
ECPS 3
3081 3
3083 3
Extended Real Addressing 3
3090 3
370/Advanced Functions 3
4300 Series 3
4321 3
4331
4341
4361
4381
9370 3
DAT Box (370) 3
ESA/370 3
System/390 3
9672 4
Application StarterPak 3000 5
ES/9000 4
9021 4
9121 4
9221 4
ESCON 4
Multiprise 2000 5
Multiprise 3000 5

W w ww

T
Tapes
2400 13
2415 14
NRZI 14
PE 14
2420-7 14
3410 14
3411 15
3420 14
3422 14
3430 14

Index

149

Tapes (continued)
3480 16
3480 IDRC 16
3490E 16
3590 16
3803 15
8809 15
9347 15
TPF 114
ACP 115
SABRE 114
DELTAMATIC 114
PANAMAC 114
SabreTalk 115
TPF/ESA 115

ZITPF 115
TSS 62
TSS/360 62

Commands 63

Dynamic linker 62
TSS/370 63

Discontinuation 63

U
UNIX/370 (Bell Labs) 105
UNIX/370 (Princeton) 108
Amdahl UTS 109
Utilities
DMKDDR 142
DMKDIR 142
DMKFMT 141
IBCDASDI 143
IBCDMPRS 143
ICKDSF 141
SA IOCP 142
ZZSA 144

V
Version 2 59
VM/CMS
CP-40 79
CMS 79
CP-67 79
Origins 78
Blaauw Box 78
Ferranti Atlas 78
Project MAC 78
VM/370 80
BSEP 83
BSEPP 83

150 Mainframe History

VM/CMS (continued)
VM/370 (continued)
CPREMOTE 82
RSCS 82
TOOLSRUN 83
VNET 82
VM/ESA 95
Version 2 96
VM/SP 84

Object Code Only (OCO) 87

PROFS 84
VCNA 84
VM TCP/IP 88
VM/PC 87
VM/SP HPO 86
VMCF 84
WISCNET 88
VM/XA 93
Bimodal CMS 94
VM/XA MA 93
VM/XA SF 93
VM/XA SP 93
zZIVM 97
VSE/ESA 46
Dynamic partitions 46
Fixed partitions 46
TCP/IP for VSE 47

Z
z/OS 59
64-bit only 59
zZIVSE 48
VSEn 50

Glossary

Linux/i370. See Bigfoot Linux.
OSA. Open Systems Adapter, a network interface card for System/390 and System Z systems.

ICA. The Integrated Communications Adapter found on the ES/9000 and emulated on the P/390, 1S3006, and
MP3000 systems that provides WAN interfaces on SDLC or BSC ports.

SDLC. Synchronous Data Link Control, a synchronous-serial WAN interface similar to X.25's HDLC.
X.25. An obsolecent WAN network protocol family common in the era of mainframes.

Token Ring. An obsolecent networking technology pushed by IBM that used a ring network topology to form a
LAN, as opposed to Ethernet (which forms a bus topology)

FDDI. Fiber Distributed Data Interface, a mixed WAN/LAN high-speed ring network that was popular in the
1990s in large systems. Requiring two fiber pairs and nothing more, some FDDI rings spanned entire continents.

ATM. Asynchronous Transfer Mode, a WAN network protocol stack that was inspired by the virtual-circuit-
switched protocols that came before it (like X.25).

ATM LANE. ATM LAN Emulation, used to simulate an Ethernet network over an ATM virtual circuit. Supported
on the OSA cards.

LEXX. The Live Parsing Editor, originally written to edit GML documents, but later enhanced with other lan-
guages. The first syntax-highlighting editor, its influence on modern IDEs cannot be forgotten.

DAT (tape). A 4mm helical-scan tape format intended for audio storage, but later reused by computers under the
name DDS (Digital Data Storage). The Multiprise 3000 and S/390 Integrated Server (as well as being possible on a
P/390) had a DAT drive that showed up to the host as a 3480 cartridge tape drive.

OMA. Optical Media Attach, a scheme in which a virtual tape is assembled from files on a CD. IBM provided a
program called Optical Media Attach/2 that ran on OS/2, and by means of a channel adapter card (either parallel or
ESCON), a fake tape drive appeared to the host. Used to distribute OS install media, programs, and documentation.
SSA. Serial Storage Architecture, the architectural precursor to SATA and SAS. IBM pushed this technology in
the late 90s and early 2000s to decent success, and it featured good performance. Though the SSA RAID cards had
a rather obtuse user interface, they were often better than the competition. The 1S/3006 and MP3000 both used
SSA.

1S/3006. System/390 Integrated Server model 3006.

MP3000. Multiprise 3000.

Shark. IBM Enterprise System Storage (ESS) DASD array.

VTL. A Virtual Tape Library, often seen attached to modern mainframes, emulating tape drives with disk files;
used for backup.

Bustech. A DASD emulation product that was available in the early 2000s; acquired by Dell and then later killed.

Glossary 151

RJE. Remote Job Entry, a remote batch job and output retrieval system that used batch terminals armed with
printers, card readers, and sometimes card punches

NJE. Network Job Entry, an upgraded RJE that supported file transfer and command execution

ALCS. AirLine Control System, a transaction monitor that runs on MVS. Versions include 2.3.1 (running on
0S/390 2.10 and z/OS 1.1) and 2.4.1 (running on z/OS 1.10). Distinct from CICS.

Personal Communications (PCOMM). IBM's 3270 and 5250 terminal emulator for PCs, also supports VT emu-

lation (as in, the DEC VT100 and VT220) as a side-effect of needing to be able to do so to properly emulate 3270
NVT mode.

152 Mainframe History

*** EDF#INIT 500 13 <snap @zero@I|s>

*k*k

*** NAME (INDEX) LCL AREA SIZE <VALUE>

*k*k

**x &@zero@ls 48 1 <0>
*k*k

STARTING PASS 2 OF 3.

STARTING PASS 3 OF 3.

