
J. Random Hacker

Dr. Emma Carelton

PHIL 2990

29 November 2024

A Thesis of Modernlangs

In a brief comment she gave me, Molly (whom prompted the creation of this essay)

remarked that Rust and Golang are inherently products of modern-day capitalism, feature a very

narrow worldview, are Western-centric, and exhibit classist ideology. While this may seem a tall

tale, I wish to explore this idea in the following paragraphs. Despite being a citizen of the

modern global village bought about by the Internet, I always like to take a step back and examine

where we came from; I also like to explore the merits of various ideologies as they relate to

computing. As much as I am an engineer, I am also a critic: this essay will explore some of the

criticism of Rust and Golang that we both seem to have.

The leading thesis that Molly made was that Rust (and, more importantly, the Cargo build

system) makes a lot of brash assumptions -- some of which may not be true for a large amount of

the world. The standard tooling for Rust projects is to use the Cargo utility: it provides package

management and program compilation/maintenance in one combined package. This is a pivotally

useful feature, yes, but introduces a whole sort of downsides. For one, when using Cargo to

build a Rust program, you must load the dependencies beforehand. If you are forced to install a

program from Cargo rather than your operating system’s package manager/load the binaries

yourself, you must download up to hundreds of crates from crates.io (paraphrasing Molly here).

Take, for example, you are stranded in rural Mississippi and do not have a stable internet

connection. As much as I am connected to the world at large, I find myself in these shoes very



Hacker 2

often -- I will find myself in a somewhat desolate place many times throughout the year, where

the only form of internet connection that is available is a ˜8000 baud packet radio connection via

amateur radio. This is not suitable at all to download all of the dependencies for a Rust package,

source or binary. Likewise, if you are building with Cargo, you cannot take use of any libraries

your operating system already has installed, because Rust does not fancy reusing libraries

already on disk. If you are on a slow or metered Internet connection, this operation is already

unnecessary and very time-consuming.

Do contrast this with most Linux distributions and BSD systems. I can easily compute a

list of every dependency a standard C program will need on a Linux system by doing a

dependency tree traversal of the Linux package build script or BSD port description file. If I

already have a version of a library on disk that is compatible, I do not need to fetch some other

specific version (since most C libraries are forwards-compatible). This is in direct contrast to

Rust and Go’s build systems -- Go fares better in this regard, but you are still fundamentally

downloading a large amount of possibly-duplicated information. Do realize that there are plenty

of people in this world that (either through choice or by a lack of any other option) use offline

package stores to put together their operating system: Debian still has the means to use apt from

a CD, as do a few other Linux distributions. Even if you are on a slow internet connection,

having a disc with all of the packages you need on it can be beneficial; it is a shame that Rust and

Golang do not foster this mindset. Instead, you are totally dependent on a third-party service that

you have little means of effectively replicating to provide you everything you need for the

complete supply chain.

Now, a common objection is that most Rust code is on GitHub or GitLab -- this is not

much better, since these are still single points of failure. Assuming that 90% of Rust projects are



Hacker 3

hosted on GitHub, 8% on GitLab, with the remaining 2% on Sourcehut, this is still not a uniform

distribution. If GitHub went down even for a moment, that would be rather crippling; contrast

this to the older-and-grander years of open source, when most projects were stored all over the

internet. Major projects that were commonly downloaded were mirrored to, in those days,

primarily servers hosted at universities. If MIT’s source-and-binary Linux repository server went

down, there were archives available elsewhere. Now, this brings an interesting remark from a

series of important essays written in the 90s: Eric Raymond compared and contrasted two open

source development models that he called "the cathedral" and "the bazaar." The bazaar model is

commonly followed by most modern-day open source projects (including Rust), where the

source code is the primary thing that is distributed, and prospective developers can easily get

involved. The inverse of this is the cathedral model, where the working source repositories are

difficult to access, not commonly accessed, or otherwise not available to access; this is the model

used by, for example, GCC. You download a GCC release tarball from one of a thousand mirrors,

rather than download the source code from a singular Git repository on GitHub. The bazaar

model is known for being more democratic, but this association fails the instant one realizes that

it is purely dependent on centralized infrastructure (GitHub, et cetera).

Fundamentally, Rust and Golang represent a hijacking of leftist ideals when applied to

software. Large businesses have hijacked open source developers as they squeeze money of a

product that, by all definitions, contains the word "free." Microsoft and GitHub produced the

Copilot AI model without any consideration for the will of the open source developers it learned

from, for example. Rust and Golang also fundamentally pit poorer people at a disadvantage: if

you are not wealthy or do not wish to spend money on a fast computer, you will be waiting long

periods of time to compile your Rust and Golang programs, thanks to spotty binary availability.



Hacker 4

If you are someone that actively wishes to live a simpler lifestyle and use older computers (as

they solve your problems just fine), you are automatically locked out of software support just by

programming language alone. I myself often use older computers for many things, simply

because they are simpler to repair, are of leaner designs, and service most computing needs for

me (email, word processing, etc) just fine. I, however, cannot compile the latest and greatest Rust

or Golang programs on a 20-year-old Alpha AXP UNIX workstation. I do understand that I am

at fault for making this choice in the first place, but, keep in mind, that 20-year-old Alpha is

running the latest GNU/Linux operating system, just devoid of Rust and Golang programs (with

shockingly good performance, too).

I grew up quite computationally poor; actually, I was poor in many regards. If I wanted to

make music, I didn’t go out and buy a synthesizer with money that I did not have, I added an

electronic-sounding rank to my 1927 theatre pipe organ. If I wanted to play a video game, I

searched around an archive of CDs I had for some killer game from 1999. Needless to say, all of

this kept me quite entertained, and I didn’t need an Internet connection for any of it (even though

I was, by all regards, self-imposing these limits upon myself). I found myself playing second

fiddle to some of my less-than-fortunate friends: when I was young, some of my friends did not

have stable Internet connections. They, however, wanted to use Linux, because I taught it to them

at school. My solution to their Internet problem? I burnt them all stacks of DVDs of whatever

release of Debian was common in those days (8 or 9, I believe it was). They would install the

OS, catalog the discs, and install packages. Rather than fetching the packages from the Internet,

it prompted them to insert a disc into the DVD drive. I saw firsthand what computing poverty

was really about, and I find it quite odd that Rust and Golang programmers would sit here and

tell me that their dependency on cut-and-dry solutions is good for people like my friends. No,



Hacker 5

they are obviously not. So many people box themselves into this pipeline of "store the source

code on GitHub, rely on dependencies from crates.io, build and deploy to Docker Hub, download

image from Docker Hub, and run on a VPS somewhere." There are so many loss-of-control

variables involved in that equation, I struggle to rationalize any situation in which this is good for

the "little guy." Microsoft decides you’re some kind of anti-Microsoft dissident? There goes your

source repository! Better hope your PC that has the only copy of the repo doesn’t go up in

smoke! Burning too much compute time on GitHub Actions? Too bad, you won’t be using any

compute time anymore! Docker Hub gets blown away thanks to a configuration error or miss-

slipping hand of their system administrator? There goes a vital part of your build pipeline!

Fundamentally, I do not believe that Rust and Golang are setting good precedents for the

future of computing. How will people like me, who actively maintain legacy systems in the

current era, have to deal with all that "legacy" Rust code in 2050? How am I going to have any

hope of tracking down every exact version of each dependency for a Python script written

yesterday in twenty years? I can easily go acquire the libraries needed to compile a 20-year-old

3D shooter, they came free with the installation of my compiler. I cannot say it will be easy to

build a 200-dependency Rust or Golang program in the future. We are not taking sufficient steps

in the current age to prepare future generations to be stewards of the software we make now. I am

fully aware that this is not an issue unique to Rust and Golang, but could be extended to all

modern computing in general with some adequate rhetorical work; I am merely selecting Rust

and Golang since the supporters and users of both tend to be very left-leaning, yet they are being

clearly blindsighted by capitalism in its purest form. When you use the standard Rust build

pipeline, you are being fully dependent on a cathedral-model-style organization that you cannot

assume has your best interests tomorrow in mind. This is the opposite of democratization, this is



Hacker 6

actually quite a case of strong centralization. I do hope people will realize how anti-them the

Rust, Golang, and Python ecosystems are, and I do hope that we can, one day, mass-replicate

source code repositories with commit history for all to grab! I see a bright future, where

everything plays along nicely, but we must first build it for that to become a reality.


