
Accepting Less(1):
What does it really mean to be UNIX?

A dialogue of computing philosophy as composed by HackerSmacker

This paper is intended to be, as are most papers I compose, orated aloud to an audience.

I often ask myself “why does UNIX exist?” Better yet, I ask myself “why
did UNIX need to exist?” These are both questions that come from a common goal
I have of understanding the operating system that has totally shaped computing,
but I must also wonder if its influence was purely a net positive. I would like to
cover the so-called “UNIX philosophy” alongside its pitfalls, as well as compare
and contrast modern UNIX systems with what was “UNIX proper” in the elder
days of computing -- by understanding the UNIX philosophy, I hope the audience
is able to then answer the two questions I have posed.

The “UNIX philosophy” is actually not one singular philosophy, but a
collection of various ideals that people lump into a common label; as such, it is
necessary that we break it down into its many subcomponents. Often times, when
we seek to define this so-called philosophy, we consult a work known as The
UNIX Programming Environment. Keep the title in mind, as UNIX (from its
inception) was described as an environment for programmers, not users (this will
become important later). Rob Pike and Brian Kernighan write that “...although [the
UNIX] philosophy can't be written down in a single sentence, at its heart is the
idea that the power of a system comes more from the relationships among
programs than from the programs themselves.” Despite being a direct
contradiction, where the authors said it could not be described in a single sentence
then proceed to describe it in a single sentence, this statement will be the root of
our analysis. Essentially, the authors are describing a type of emergent property.
What is an emergent property? Consider human consciousness: it cannot exist on
its own, it must emerge on top of an already-functioning and properly-connected
set of neurons — this, in turn, depends on a working body, a livable planet, a
functioning solar system, and the universe. In other words, the authors described
the UNIX philosophy as the idea that UNIX is an emergent system, comprised of
many parts that each serve their individual purpose and only that purpose. This
would be expanded on a few months later (in 1984) in a paper called “Program
Design in the UNIX Environment,” where it was stated that these emergent-system
building blocks should be simple to use on their own, but very easy to combine



with other programs. This too is where a pivotal feature of UNIX, perhaps its most
important feature, comes to rise: shell pipelines. In order to form a spell checker,
one could write a dedicated spell-checking program, or adapt a series of smaller
programs to achieve the same outcome but in a much faster fashion. This is similar
to the “tool store analogy” — say I wish to build cabinets. I could build a
dedicated cabinet-building machine that will take 2 months to build and construct
1000 cabinets a day, or I can use hand tools that I buy at a tool store to make 10
cabinets a day (but I can start work on those cabinets as soon as I get home). This
is the core of the UNIX philosophy aspect as we just discussed: use the tools that
are already there, because they were perfected. The screwdriver, the saw, the
hammer, the chisel — all perfected tools you can go buy, but your cabinet maker
machine will require much effort to become perfected.

UNIX, throughout its history, has always contrasted itself with other
systems. The most notorious example is the UNIX cat command, which that same
paper contrasts with the so-called “file system commands” found on other
operating systems of that time. The cat command combines one or more input
files into a single output file; if the output is not redirected, the output goes
straight to your terminal screen. Other operating systems used different commands
to combine (concatenate) and display (type) files, but the authors are specifically
referring to the PIP command found on RSX-11 (an operating system found
contemporaneously on the same hardware, the PDP-11). They proceed to object to
their own statement, by stating that neither approach is better or worse, but that
one of them (that is, PIP) goes directly against the UNIX philosophy. Doug
McIlroy famously stated that text streams are the universal interface, but even this
is not entirely true; so begins our criticism of the UNIX program design model.
Say, for instance, that I wish to provide an application with network facilities. One
such way to do this is to use a program known as netcat. Like cat, netcat
provides a simple stream interface in and out of, rather than file, a network socket.
Data can be entered into the program by another program to be transmitted to the
remote host via the network connection, and can be received from the remote host
and deposited back into another program. This can make for a very useful tool,
especially when you wish to test network applications or write a very simple shell-
scripted interface to a network service, but there are plenty of downsides.

Let’s say that you were writing a C program on a UNIX system, and you
wished to give it TCP/IP capability. You have two options: you can use a set of
system calls and C library functions, or you can be a UNIX philosopher and open a
bidirectional pipe for the netcat program. There is nothing stopping you from



achieving network capability purely through netcat at all, but you must mind
both the ergonomics and performance factors at play here. The read and write
system calls will be just as easy to use with a socket file descriptor as they would
be with a pipe file descriptor (as they are the exact same thing), but catching any
errors from netcat will be quite cumbersome compared to checking the errno
value that is set after a failed attempt to connect to a remote host. Yet and still, you
are attempting to write your own network socket facility, something that netcat
(a “perfected program” as I often call it) does with more features than you could
ever possibly need; your actions, seemingly, go directly against the UNIX
philosophy. Oh, you seek to use the wonderful EMACS editor solution? Fear not,
but do fear — that too is a monolith that exhibits similar UNIX-style design goals. 

Essentially, what I am discussing here is a major component of UNIX, the
network stack, being totally independent and exempt from the UNIX philosophy.
On all major UNIX systems that have TCP/IP support, the network stack is a
monolith that is built into the kernel. On UNIX, as I am sure you are already
aware, nearly every device (from the system main memory, to every terminal, to
every disk, to nearly everything else) can be accessed through special files in the
dev directory. The glaring exclusion to this “everything is a file” rule is, of course,
network adapters. Despite looking, effectively no UNIX system has a /dev/net0
device node! Why is this? What would its interface look like? Would I ever need
this? To answer those in reverse order, yes, you would ever need this —
particularly if you are writing a VPN program (for example). Nearly all modern
UNIX systems (Linux, FreeBSD, OS X, and Solaris among them) have what’s
known as “the tun/tap device” that permits the creation of fake Ethernet cards and
loopback devices. This exposes a device you may (on some systems, mind you) be
able to open and read/write packets to and from, but those packets are merely sent
to the host to be processed. If you wish to use a tap device, for example, to receive
arbitrary Ethernet datagrams sent on a LAN, you must use a bridge device to
connect the fake Ethernet card to a real Ethernet card (just as you could use a
bridge device to connect two real Ethernet cards together, cross-connecting two
LANs into one). The network devices that are listed using ifconfig are not
devices in the /dev directory at all, and you cannot UNIX-philosophize your way
to a working network stack. For as long as UNIX has existed, save for some
notable exceptions (NCP Network UNIX among them), the Internet Protocol was
always implemented as something entirely in the kernel, accessible only to the
user through special system calls.

So, then, if this is such a clear divergence from the standard UNIX design



methodology, why has it become so pervasive amongst nearly every OS ever, not
just UNIX? Well, it comes from a historical perspective that was commonly
applied in the era in which Berkeley UNIX gained its now famous TCP/IP stack.
UNIX was, and still is, the programmer’s system — it has an inbuilt C compiler
(or, well, at least, did; now only the BSDs contain one in any “common base
distribution”), an online debugger, online pages to remind you of the syntax to
various C library functions and system calls, and a somewhat useful filesystem
conducive to programs: all things pivotally useful to upholding the UNIX
philosophy. The C compiler is subdivided into parts (usually), programs can be
manipulated using a variety of command-line stream editor utilities, so on and so
forth. As we discussed earlier, however, networking is implemented on UNIX
systems in a way that is directly antithetical to how the rest of the operating system
is architectured (not to mention what the rest of the consistent user experience
might command). There exists this monolith of code, this unapproachable mighty
box of system functionality, contained in a field exempt from the UNIX
philosophy. Why was this done? Well, put simply, it was done for performance
reasons. The UNIX philosophy, as many have noted over the decades it has
existed, tends to suffer somewhat when high-performance systems are considered.
It is the reason that, for many years, serious enterprise computing has been done
on monolithic-kernel systems with, usually, a strong service model. Networking
stacks are not implemented with pipes because it is simply not performant, and
introduces too much overhead and latency -- this is part of the reason that we have
seen the UNIX-dephilosophizing of key parts of the Linux environment (a good
example would be pppd’s adaption from a pipe-based solution with VTYs to
having kernel-mode code that process PPP over Ethernet for certain ISP
connections). 

With that in mind, is the UNIX philosophy even being held up in this day
and age? In the general direction of Linux systems, it would not seem that there is
much fuel left to burn the UNIX fire. Major Linux components, such as systemd
and Wayland, are functional monoliths in their dominant implementations. X11
was thrown away for being “outdated”, all whilst being the most modular graphics
system created to date. Was any of this warranted? Yes, of course, but, at the same
time, not really. The UNIX philosophy meant that you could mix and match your
way to victory, build complex emergent behaviors from simple components, and
program with ease. Is UNIX easy for end users to use? No, not at all, it is actually
extremely user-hostile! Is UNIX easy for programmers to use? Sure, but,
compared to some other systems it competed against (primarily TOPS-10 and
VMS), it is no better or worse than any other system. Ultimately, UNIX stands on



its own — as another brick in the wall of a diverse computing infrastructure,
another knife in the drawer of cutting solutions. 


